中国科学院数学与系统科学研究院期刊网

15 May 1960, Volume 10 Issue 2
    

  • Select all
    |
    论文
  • Acta Mathematica Sinica, Chinese Series. 1960, 10(2): 143-150. https://doi.org/10.12386/A1960sxxb0011
    Abstract ( )   Knowledge map   Save
    This paper is a continuadon of my papers [16] and [24]. We difine: λ_1,…, λ_n are the characteristic roots of A; where A is the coniugate of the transpose of A and K may be any positive integer. In this paper We shall prove some theorems as follows:
  • Acta Mathematica Sinica, Chinese Series. 1960, 10(2): 151-167. https://doi.org/10.12386/A1960sxxb0012
    Abstract ( )   Knowledge map   Save
  • Acta Mathematica Sinica, Chinese Series. 1960, 10(2): 168-181. https://doi.org/10.12386/A1960sxxb0013
    Abstract ( )   Knowledge map   Save
    In this paper, we shall give the details of the proofs of the conditional results which we have announced in the paper [1] and [2].
  • Acta Mathematica Sinica, Chinese Series. 1960, 10(2): 182-189. https://doi.org/10.12386/A1960sxxb0014
    Abstract ( )   Knowledge map   Save
    This paper concerns with the queueing process. GI/M/n with bulk service. By the Use of the embedded Markov chain method introduced by Kendall, we prove that the Markov chain associated with this queueing process is irreducible and aperiodic.Let the mean inter-arrival time. and mean service, time be a and b respectively, and let the maximum number of a batch of customers being served in a single counter be S. We prove that if b/a < nS, then the system is ergodic. The stationary distributions of the queue length and waiting time are also found.Finally, we obtain the distribution of the length of a busy period in terms of the number of participating customers.Particularly, if S = 1, our results are conform with that obtained by Kendall.
  • Acta Mathematica Sinica, Chinese Series. 1960, 10(2): 190-201. https://doi.org/10.12386/A1960sxxb0015
    Abstract ( )   Knowledge map   Save
    Let GI/E_k/1 be a queueing process as defined in Kendall.Applying the method introduced by Conolly, we obtained the distribution of the queue length at any finite time. The main result cap be described as follows:Theorem. Let p_n(t) be the probability that the system is in state n at dine t, and let be its Laplace transform, then where λ_1,…, λ_h are the distinct roots of the equation in the unit circle |λ|< 1, and l_1,…, l_h are their multiplicities respectively; the coefficients α_(ii) are determined by the matrix equation and A_(ki) is the cofactor of a_(ki) in A; and fo(λ) =1/1-λ,f_r(λ)=λf′_(r-1)(λ) (r≥1), F_o(λ,m)=b(1-λ~k)λ~m/bz+k(1-λ)’By calculation,we have For A_(ki), four particular cases have been considered here, namely (Ⅰ) h = k, l_1 =… =l_k= 1; (Ⅱ) h = 1, l = k; (Ⅲ) h=2,l_1=k-1,l_2=1; (Ⅳ) h=k- 1, l_1= 2,l_2=…= l_(k-1)= 1.We concluded this paper by considering the Busy Period in relation to GI/E_k/1 as Conolly in.
  • Acta Mathematica Sinica, Chinese Series. 1960, 10(2): 202-211. https://doi.org/10.12386/A1960sxxb0016
    Abstract ( )   Knowledge map   Save
  • Acta Mathematica Sinica, Chinese Series. 1960, 10(2): 212-222. https://doi.org/10.12386/A1960sxxb0017
    Abstract ( )   Knowledge map   Save
    Soit f(z) une fonction meromorphe dans le cercle unite; a l'aide de l'indice N(r,a), M. Hiong a defmit la valeur exceptionnelle B de a, pour f et dans le cas ou f ne s'annule pas et admette 1 comme valeur exceptionnelle B, il a demontre un theoreme de limitation analogue au theoreme bien connu de Schottky. Dans le present travail, nous substituons f~((k)) a f dans l'hypothese relative a la valeur 1, et nous obtenons un theoreme du type de celui de Miranda-Valiron. Pour la demonstration de ce theoreme, nous suivons en prineipe la methode par laquelle M. Hiong a donne sa nouvelle demontration au theoreme de Miranda-Valiron. La limitation de log M (r,f) qu'il a trouvee est tres precise, mais elle eontient le terme en log 1/r et la constante log |1/f(0)|; et il est desirrable, comme cet auteur l'a signale, de pouvoir les eliminer. Ici, nous parvenons a cette amelioration en modifiant certains points de son procede d'elimination. Nous etendons ensuite le theoreme obtenu ainsi que celui donne par M. Hiong aux fonctions admettant deux valeurs exeeptionnelles B.Theoreme Ⅰ. Soit f(z) une fonction holomorphe dans le cercle unite; si elle ne s'annule pas et si sa derivee f~((k)) admet 1 comme valeur exceptionnelle B, de sorte que pour 0 < r < 1 H_k et K_k etant des constantes numeriques qui ne dependent que de k et de λ'.Theoreme Ⅱ, Soit f(z) une fonetion holomorphe dans le eercle unite; si elle admet 0, et 1 comme valeurs exeeptionnelles B, de sorte que pour 0 < r < 1 N(r, 0) < λ_1 log 1/1-r,N(r, 1) < λ_2 log 1/1-r(λ_1, λ_2 > 0).(β) Alors, en supposant f(0) ≠ 0 et f(0) ≠ 1, on a pour 0 < r < 1 l'inegalite analogue (1). H et K etant des constantes numeriques qui dependent seulement du plus grand des nombres λ_1 et λ_2.Theoreme Ⅲ. Soit f(z) une fonction holomorphe darts le cercle unite; si elle admet 0 et si sa derivee f~((k)) admet 1 comme valeurs exceptionnelles B, de sorte que pour 0
  • Acta Mathematica Sinica, Chinese Series. 1960, 10(2): 223-238. https://doi.org/10.12386/A1960sxxb0018
    Abstract ( )   Knowledge map   Save
  • Acta Mathematica Sinica, Chinese Series. 1960, 10(2): 239-261. https://doi.org/10.12386/A1960sxxb0019
    Abstract ( )   Knowledge map   Save
    It is known that every continuous function on a compact group can be approximated by finite polynomials. Prof. Hua has established that the Fourier series of continuous functions on unitary group can be surnmable to itself by means of the Abel summability. Hua's theorem is the first one for the convergence of Fourier series of functions on compact groups of a finite dimension. Certainly, a convergence theorem is better than an approximation theorem.Let u(U) be an integrable function on n-dimensional unitary group U_n, Its Fourier series isA_f_1...f_n(U) is the unitary representation with signature f = (f_1, f_2,…, f_n) where f_1, f_2, …, f_n are integers satisfying f_1≥ f_2≥…≥ f_n; N(f) = N(f_1, …, f_n) is the order of the matrix A_f_1…f_n(U) and C is the volume of the unitary group U_n, i.e. C = (2π)~(1/2n(n+1))/((n - 1)! (n - 2)!…2!1!).Hua defined the Abel summability of Fourier series (1) as wher Moreover,he pointed out that In the present paper,by a complicate calculation,we provedTheorem Ⅰ.provided l_1>l_2>…>l_s≥0>l_(s+1)>… >l_n(n≥s≥0), where N_s(a, b) denote N(a_1,…,a_s, b_(s+1),…, b_n), g = (g_1, g_2,…, g_n), (g_1 + n - 1, g_2 + n- 2,…, g_n) is a permutation of (0, 1,…, n- 1),0 ≥g_1≥g_2≥… ≥g_s≥s- n.Many various forms of ρ~f(r) are given also.Moreover we establish the followingTheorem Ⅱ. The partial sum of the Fourier series (1) is where (V)is the Diriehlet kernele~(iθ1), e~iθ2),…, are the characteristic roots of V, and d_N(θ)=sin(N + 1/2)/sin 1/2θ, the Dirichlet kernel of one variable.Two proofs of theorem Ⅱ are given, one is analytic, and the other is algebraic which is given by L. K. Hua.