Biharmonic Hypersurfaces in Es5

Yu FU, Zhong Hua HOU, Dan YANG, Xin ZHAN

Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (2) : 335-352.

PDF(522 KB)
PDF(522 KB)
Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (2) : 335-352. DOI: 10.12386/A2022sxxb0027

Biharmonic Hypersurfaces in Es5

  • Yu FU1, Zhong Hua HOU2, Dan YANG3, Xin ZHAN4
Author information +
History +

Abstract

We study the geometry and classification problems of biharmonic hypersurfaces in a pseudo-Euclidean 5-space Es5 (s=1,2,3,4). We prove that if Mr4 is a nondegenerate hypersurface in Es5 with diagonal shape operator, then Mr4 is minimal. Furthermore, based on the results due to Turgay et al. we show that any Lorentz biharmonic hypersurfaces in E15 is minimal. This result gives supporting answers to the biharmonic conjecture for hypersurfaces in 5-dimensional pseudo-Euclidean space.

Key words

biharmonic maps / pseudo-Euclidean space / biharmonic hypersurfaces / biharmonic conjecture

Cite this article

Download Citations
Yu FU, Zhong Hua HOU, Dan YANG, Xin ZHAN. Biharmonic Hypersurfaces in Es5. Acta Mathematica Sinica, Chinese Series, 2022, 65(2): 335-352 https://doi.org/10.12386/A2022sxxb0027

References

[1] Arvanitoyeorgos A., Defever F., Kaimakamis G., Papantoniou V. J., Biharmonic Lorentz hypersurfaces in E14, Pacific J. Math., 2007, 229(2): 293–305.
[2] Chen B. Y., Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 1991, 17(2): 169–188.
[3] Chen B. Y., Ishikawa S., Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 1991, 45(2): 323–347.
[4] Chen B. Y., Ishikawa S., Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math., 1998, 52(1): 167–185.
[5] Defever F., Kaimakamis G., Papantoniou V. J., Biharmonic hypersurfaces of the 4-dimensional semiEuclidean space Es, J. Math. Anal. Appl., 2006, 315(1): 276–286.
[6] Dong Y. X., Ou Y. L., Biharmonic submanifolds of pseudo-Riemannian manifolds, J. Geom. Phys., 2017, 112: 252–262.
[7] Fu Y., Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space, Tohoku Math. J., 2015, 67(3): 465–479.
[8] Fu Y., Hong M. C., Zhan X., On Chen’s biharmonic conjecture for hypersurfaces in R5, Adv. Math., 2021, 383, 107697.
[9] Guan Z. D., Li H. Z., Vrancken L., Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature, J. Geom. Phys., 2021, 160, 103984, 15 pp.
[10] Gupta R. S., Deepika Ahmad S., Lorentz Hypersurfaces in Pseudo-Euclidean Space E15, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 2020, 90(1): 123–133.
[11] Hasanis T., Vlachos T., Hypersurfaces in E4 with harmonic mean curvature vector field, Math. Nachr., 1995, 172: 145–169.
[12] Jiang G. Y., 2-harmonic maps and their first and second variational formulas (in Chinese), Chinese Ann. Math. Ser. A, 1986, 7(4): 389–402.
[13] Liu J. C., Du L., Classification of proper biharmonic hypersurfaces in pseudo-Riemannian space forms, Differential Geom. Appl., 2015, 41: 110–122.
[14] Ou Y. L., Chen B. Y., Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry, World Scientific Publishing, Hackensack, NJ, 2020.
[15] Turgay N. C., Some classifications of biharmonic Lorentzian hypersurfaces in Minkowski 5-space, Mediterr. J. Math., 2016, 13(1): 401–412.
[16] Yang D., Fu Y., Biharmonic hypersurfaces in pseudo-Riemannian space forms, Int. J. Geom. Methods Mod. Phys., 2016, 13(7), 1650094, 14 pp.
PDF(522 KB)

453

Accesses

0

Citation

Detail

Sections
Recommended

/