Order Boundedness of Weighted Composition Operators Between Two Classes of Function Spaces

Qing Ze LIN

Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (2) : 317-324.

PDF(419 KB)
PDF(419 KB)
Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (2) : 317-324. DOI: 10.12386/A2022sxxb0025

Order Boundedness of Weighted Composition Operators Between Two Classes of Function Spaces

  • Qing Ze LIN
Author information +
History +

Abstract

In this paper, we first investigate the correspondence between order boundedness and Hilbert-Schmidt of weighted composition operators Wϕ,φ(f):=ϕfφ. Then, by resorting to the estimates of the norms of point evaluation functionals δz and derivative point evaluation functionals δz on weighted Dirichlet spaces Dβq(0<q<,1<β<) and derivative Hardy spaces Sp(0<p<), the order boundedness of weighted composition operators Wϕ,φ between weighted Dirichlet spaces Dβq and derivative Hardy spaces Sp are completely characterized.

Key words

weighted Dirichlet space / derivative Hardy space / weighted composition operator / order boundedness

Cite this article

Download Citations
Qing Ze LIN. Order Boundedness of Weighted Composition Operators Between Two Classes of Function Spaces. Acta Mathematica Sinica, Chinese Series, 2022, 65(2): 317-324 https://doi.org/10.12386/A2022sxxb0025

References

[1] Attele K., Multipliers of composition operators, Tokyo J. Math., 1992, 15(1): 185–198.
[2] Contreras M., Hernández-Díaz A., Weighted composition operators on Hardy spaces, J. Math. Anal. Appl., 2001, 263(1): 224–233.
[3] Contreras M., Hernández-Díaz A., Weighted composition operators on spaces of functions with derivative in a Hardy space, J. Operator Theory, 2004, 52(1): 173–184.
[4] Cowen C., MacCluer B., Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
[5] Čučković Ž., Paudyal B., Invariant subspaces of the shift plus complex Volterra operator, J. Math. Anal. Appl., 2015, 426(2): 1174–1181.
[6] Čučković Ž., Zhao R. H., Weighted composition operators on the Bergman space, J. London Math. Soc., 2004, 70(2): 499–511.
[7] Čučković Ž., Zhao R. H., Weighted composition operators between different weighted Bergman spaces and different Hardy spaces, Illinois J. Math., 2007, 51(2): 479–498.
[8] Domenig T., Order Bounded and p-summing Composition Operators, Amer. Math. Soc., Providence, 1998.
[9] Galanopoulos P., Girela D., Peláez J., Multipliers and integration operators on Dirichlet spaces, Trans. Amer. Math. Soc., 2011, 363(4): 1855–1886.
[10] Gao Y. X., Kumar S., Zhou Z. H., Order bounded weighted composition operators mapping into the Dirichlet type spaces, Chin. Ann. Math. Ser. B, 2016, 37(4): 585–594.
[11] Girela D., Peláez J., Carleson measures, multipliers and integration operators for spaces of Dirichlet type, J. Funct. Anal., 2006, 241(1): 334–358.
[12] Grafakos L., Classical Fourier Analysis, Springer, New York, 2014.
[13] Gu C. X., Luo S. B., Composition and multiplication operators on the derivative Hardy space S2(D), Complex Var. Elliptic Equ., 2018, 63(5): 599–624.
[14] Hibschweiler R., Order Bounded Weighted Composition Operators, Amer. Math. Soc., Providence, 2008.
[15] Hunziker H., Jarchow H., Composition operators which improve integrability, Math. Nachr., 1991, 152(1): 83–99.
[16] Jarchow H., Riedl R., Factorization of composition operators through Bloch type spaces, Illinois J. Math., 1995, 39(3): 431–440.
[17] Kumar S., Weighted composition operators between spaces of Dirichlet type, Rev. Mat. Complut., 2009, 22(2): 469–488.
[18] Lin Q. Z., On the boundedness of weighted composition operators on weighted Dirichlet spaces (in Chinese), J. Appl. Funct. Anal., 2018, 20(4): 369–376.
[19] Lin Q. Z., Liu J. M., Wu Y. T., Volterra type operators on Sp(D) spaces, J. Math. Anal. Appl., 2018, 461(2): 1100–1114.
[20] Lin Q. Z., Liu J. M., Wu Y. T., On the boundedness of weighted composition operators on Sp spaces and the compactness of inclusion maps (in Chinese), J. Appl. Funct. Anal., 2018, 20(2): 130–135.
[21] Lin Q. Z., Liu J. M., Wu Y. T., Order boundedness of weighted composition operators on weighted Dirichlet spaces and derivative Hardy spaces, Bull. Belg. Math. Soc. Simon Stevin, 2020, 27(1): 627–637.
[22] MacCluer B., Composition operators on Sp, Houston J. Math., 1987, 13(2): 245–254.
[23] Novinger W., Oberlin D., Linear isometries of some normed spaces of analytic functions, Canad. J. Math., 1985, 37(1): 62–74.
[24] Roan R., Composition operators on the space of functions with Hp-derivative, Houston J. Math., 1978, 4(3): 423–428.
[25] Shapiro J., Taylor P., Compact, nuclear, and Hilbert–Schmidt composition operators on H2, Indiana Univ. Math. J., 1973, 23(1): 471–496.
[26] Sharma A., On order bounded weighted composition operators between Dirichlet spaces, Positivity, 2017, 21(3): 1213–1221.
[27] Sharma M., Sharma A., On order bounded difference of weighted composition operators between Hardy spaces, Complex Anal. Oper. Theory, 2019, 13(5): 2191–2201.
[28] Ueki S., Order bounded weighted composition operators mapping into the Bergman space, Complex Anal. Oper. Theory, 2012, 6(3): 549–560.
[29] Wang S. M., Wang M. F., Guo X., Differences of Stević–Sharma operators, Banach J. Math. Anal., 2020, 14(3): 1019–1054.
[30] Zhu K. H., Operator Theory in Function Spaces, Amer. Math. Soc., Providence, 2007.
PDF(419 KB)

460

Accesses

0

Citation

Detail

Sections
Recommended

/