Cheng Jun DING, Ying JING, Wei Guo YANG.
The Equivalent Properties of Markov Chains Indexed by a Tree Taking Value on R. Acta Mathematica Sinica, Chinese Series, 2023, 66(1): 143-148 https://doi.org/10.12386/A20210010
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Benjamini I., Peres Y., Markov chains indexed by trees, Ann. Probab., 1994, 22:219-243. [2] Chen X. X., Yang W. G., Wang B., The equivalent definition of T-indexed Markov chains (in Chinese), J. Math. Study, 2012, 45(4):411-414. [3] Chung K., Conrse in Probability Theory, Academic Press, New York, 1974. [4] Dang H., Yang W. G., Equivalent properties of bifurcating Markov chains indexed by a binary tree (in Chinese), Chin. J. Appl. Prob. Stat., 2014, 30(5):491-496. [5] Huang H. L., Yang W. G., Strong law of large numbers for Markov chains indexed by an infinite tree with uniformly bounded degree, Sci. China Ser. A., 2008, 51(2):195-202. [6] Wang B., Yang W. G., Shi Z. Y., Strong laws of large numbers for countable Markov chains indexed by a Cayley tree (in Chinese), Sci. Sin. Math., 2012, 42(10):1031-1036. [7] Yang W. G., Some limit properties for Markov chains indexed by a homogeneous tree, Statist. Probab. Lett., 2003, 65(3):241-250. [8] Yang W. G., Liu W., Strong law of large numbers for Markov chains field on a Bethe tree, Statist. Probab. Lett., 2000, 49(3):245-250. [9] Yang W. G., Liu W., Strong law of large numbers and Shannon-McMillan theorem for Markov chain fields on trees, IEEE Trans. Inform. Theory, 2002, 48(1):311-318.