On Regular Linear Relations

T. ÁLVAREZ

Acta Mathematica Sinica ›› 2012, Vol. 28 ›› Issue (1) : 183-194.

PDF(207 KB)
PDF(207 KB)
Acta Mathematica Sinica ›› 2012, Vol. 28 ›› Issue (1) : 183-194. DOI: 10.1007/s10114-012-9314-0
Articles

On Regular Linear Relations

  • T. ÁLVAREZ
Author information +
History +

Abstract

For a closed linear relation in a Banach space the concept of regularity is introduced and studied. It is shown that many of the results of Mbekhta and other authors for operators remain valid in the context of multivalued linear operators. We also extend the punctured neighbourhood theorem for operators to linear relations and as an application we obtain a characterization of semiFredholm linear relations which are regular.  

Key words

Regular linear relation / polynomial in a linear relation / semiFredholm linear relation

Cite this article

Download Citations
T. ÁLVAREZ. On Regular Linear Relations. Acta Mathematica Sinica, 2012, 28(1): 183-194 https://doi.org/10.1007/s10114-012-9314-0

References

[1] Kato, T.: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math., 6, 261-322 (1958)

[2] Mbekhta, M.: Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux. Glasgow Math. J., 29, 159-17 (1987)

[3] Mbekhta, M.: Résolvant généralisé et théorie spectrale. J. Operator Theory, 21, 69-105 (1989)

[4] Mbekhta, M.: On the generalized resolvent in Banach spaces. J. Math. Anal. Appl., 189, 362-377 (1995)

[5] Mbekhta, M., Ouahab, A.: Opérateur s-régulier dans un espace de Banach et théorie spectrale. Acta Sci. Math. (Szeged), 59, 525-543 (1994)

[6] Schmoeger, C.: On isolated points of the spectrum of a bounded operator. Proc. Amer. Math. Soc., 117, 715-719 (1993)

[7] Cross, R. W.: Multivalued Linear Operators, Marcel Dekker, New York, 1998

[8] von Neumann, J.: Functional Operators, Vol. 2, The Geometry of Orthogonal Spaces, Ann. of Math. Stud., Princeton University Press, Princeton, 1950

[9] Coddington, E. A.: Multivalued operators and boundary value problems, Lecture Notes in Math. 183, Springer-Verlag, Berlin, 1971

[10] Favini, A., Yagi, A.: Multivalued linear operators and degenerate evolution equations. Ann. Mat. Pura Appl., 163(4), 353-384 (1993)

[11] Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1998

[12] Gromov, M.: Partial Differential Relations, Springer-Verlag, Berlin, 1986

[13] Agarwal, R. P., Meehan, M., O'Regan, D.: Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001

[14] Gorniewicz, L.: Topological fixed Point Theory of Multivalued Mappings, Kluwer, Dordrecht, 1999

[15] Grixti-Cheng, D.: The invariant subspace problem for linear relations on Hilbert spaces. J. Austr. Math. Anal. Appl., 5, 1-7 (2008)

[16] Saveliev, P.: Lomonosov's invariant subspace theorem for multivalued linear operators. Proc. Amer. Math. Soc., 131(3), 825-834 (2003)

[17] Baskakov, A. G., Chernyshov, K. I.: Spectral analysis of linear relations and degenerate operator semigroups. Sbornik Math., 193(11), 1573-1610 (2002)

[18] Alvarez, T., Cross, R. W., Wilcox, D.: Multivalued Fredholm type operators with abstract generalised inverses. J. Math. Anal. Appl., 261, 403-417 (2001)

[19] Alvarez, T., Cross, R. W., Wilcox, D.: Quantities related to upper and lower semiFredholm type linear relations. Bull. Austr. Math. Soc., 66, 275-289 (2002)

[20] Labrousse, J.-Ph., Sandovici, A., de Snoo, H. S. V., et al.: Quasi-Fredholm relations in Hilbert spaces. Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau, 16, 93-105 (2006)

[21] Sandovici, A.: Some basic properties of polynomials in a linear relation in linear spaces. Oper. Theory Adv. Appl. 175, Birkh¨auser, Basel, 2007, 231-240

[22] Goldberg, S.: Unbounded Linear Operators. Theory and Aplications, McGraw-Hill, New York, 1966

[23] Sandovici, A., de Snoo, H. S. V., Winkler, H.: Ascent, descent, nullity, defect, and related notions for linear relations in linear spaces. Linear Algebra and its Applications, 423, 456-497 (2007)

[24] Müller, V.: On the regular spectrum. J. Operator Theory, 31, 363-380 (1994)

[25] West, T. T.: Removing the jump-Kato's decomposition. Rocky Mount. J. Math., 20, 603-612 (1990)
PDF(207 KB)

174

Accesses

0

Citation

Detail

Sections
Recommended

/