
The Boundary Behavior of Isotonic Cauchy Type Integral in Clifford Analysis
Min KU, Jin Yuan DU, Dao Shun WANG
Acta Mathematica Sinica, Chinese Series ›› 2011, Vol. 54 ›› Issue (2) : 177-186.
The Boundary Behavior of Isotonic Cauchy Type Integral in Clifford Analysis
Clifford analysis / Isotonic Cauchy type integral / Privalov theorem {{custom_keyword}} /
[1] Ifimie V., Fonctions hypercomplexes, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 1965, 9(57): 279-332.
[2] Brackx F., Delanghe R., Sommen F., Clifford Analysis, Pitman, London: Res. Notes Math., 76: 1982.
[3] Delanghe R., Sommen F., Soucek V., Clifford Algebra and Spinor Valued Functions, Dordrecht: Kluwer Academic, Dordrecht, 1992.
[4] Gürlebeck K., Kähler U., Ryan J., Sprössig W., Clifford analysis over unbounded Domains, Advances in Applied Mathematics, 1997, 19(2): 216-239.
[5] Zhang Z., Some properties of operators in Clifford analysis, Compl. Var., 2007, 52(6): 455-473.
[6] Sommen F., Peña-Peña D., Martinelli-Bochner formula using Clifford analysis, Arch. Math., 2007, 88: 358-363.
[7] Blaya R. A., Reyes J. B., Peña Peña D., Sommen F., The isotonic Cauchy transform, Advances in Applied Clifford Algebras, 2007, 17(2): 145-152.
[8] Ku M., Integral formula of isotonic functions over unbounded domain in Clifford analysis, Adv. Appl. Clifford Alg., 2010, 20(1): 57-70.
[9] Ku M., Du J. Y., Wang D. S., On generalization of Martinelli-Bochner integral formula using Clifford analysis, Adv. Appl. Clifford Alg., 2010, 20(2): 351-366.
[10] Jinyuan D., A theorem on boundary values of integral of Cauchy-type and its applications, Journal of Mathematics, 1982, 2(2): 115-126.
[11] Brackx F., Bures J., De Schepper H., Eelbode D., Sommen F., Soucěk V. Fundaments of Hermitean Clifford analysis part I: Complex structure, Complex Analysis and Operator Theory, 2007, 1(3): 341-365.
[12] Brackx F., Bures J., De Schepper H., Eelbode D., Sommen F., Soucěk V., Fundaments of Hermitean Clifford analysis part II: splitting of h-monogenic equations, Comple. Var. Elli. Equa., 2007, 52 (10/11): 1063-1079.
[13] Ku M., Du J. Y., On integral representation of spherical k-regular functions in Clifford analysis, Adv. Appl. Clifford Alg., 2009, 19(1): 83-100.
[14] Ku M., Du J. Y., A Laurent expansion and Residue theorems of k-regular functions in Clifford analysis. Wuhan University Journal of Natural Sciences, 2009, 14(2): 97-102.
[15] Ku M., Du J. Y., Wang D. S., Some properties of holomorphic Cliffordian functions in complex Clifford analysis, Acta Mathematics Scientia, 2010, 30B(3): 747-768.
[16] Ku M., Wang D. S., Solutions to the polynomial Dirac equations on unbounded domains in Clifford analysis, Mathematical Methods in the Applied Sciences, 2010, doi: 10.1002/maa.1368.
[17] Ku M., Wang D. S., Half Dirichlet problem for matrix functions on the unit ball in Hermitian Clifford analysis, Journal of Mathematical Analysis and Applications, 2011, 374: 442-457.
[18] Brackx F., De Knock B., De Schepper H., Multi-vector spherical monogenics, spherical means and distributions in Clifford analysis, Acta Mathematica Sinica, 2005, 21(5): 1197-120.
[19] Brackx F., De Schepper N., Kou K. I., Sommen F., The Mehler formula for the generalized Clifford-Hermite polynomials, Acta Mathematica Sinica, 2007, 23(4): 697-704.
[20] Jinyuan D., Na X., Zhang Z. X., Boundary behavior of Cauchy-type integrals in Clifford analysis, Acta Math. Sci., 2009, 29(B): 210-224.
[21] Kytmanov A. M., The Bochner-Martinelli Integral and Its Applications, Birkhäuser: Springer-Verlag, 1995.
[22] Lu Q. K., Zhong T. D., An extension of the Privalov theorem, Acta Mathematica Sinica, Chinese Series, 1957, 7(1): 144-165.
/
〈 |
|
〉 |