The Zeros of Complex Delay-differential Polynomials Related to Hayman Conjecture

Ying Chun, GAO Kai LIU

Acta Mathematica Sinica, Chinese Series ›› 2023, Vol. 66 ›› Issue (1) : 67-74.

PDF(417 KB)
PDF(417 KB)
Acta Mathematica Sinica, Chinese Series ›› 2023, Vol. 66 ›› Issue (1) : 67-74. DOI: 10.12386/A20210079

The Zeros of Complex Delay-differential Polynomials Related to Hayman Conjecture

  • Ying Chun, GAO Kai LIU
Author information +
History +

Abstract

This paper is based on the Hayman Conjecture for the zeros problem of complex differential polynomials. Using an important estimate on the zeros of higher derivative of meromorphic functions given by Yamanoi, we obtain the improved results on the zeros of delay-differential polynomials. For instance, we have that if f is a transcendental meromorphic function with hyper-order less than one and qp+s+t+1, then [Q(f)P(f(z +c))](k) -a has infinitely many zeros, where a is a non-zero constant, P(z) is a polynomial of degree p with t different zeros and Q(z) is a polynomial of degree q with s different zeros. Our results improve the former results which obtained mainly by the second main theorem of Nevanlinna.

Key words

Nevanlinna theory / Hayman Conjecture / complex delay-differential polynomials / zeros

Cite this article

Download Citations
Ying Chun, GAO Kai LIU. The Zeros of Complex Delay-differential Polynomials Related to Hayman Conjecture. Acta Mathematica Sinica, Chinese Series, 2023, 66(1): 67-74 https://doi.org/10.12386/A20210079

References

[1] An H. T. T., Phuong N. V., A note on Hayman's conjecture, International Journal of Mathematics, 2020, 31(6):2050048, 10 pp.
[2] Bergweiler W., Eremenko A., On the singularities of the inverse to a meromorphic function of finite order, Revista Matemática Iberoamericana, 1995, 11:355-373.
[3] Chen H. H., Fang M. L., On the value distribution of fnf', Sci. China Ser. A, 1995, 38:789-798.
[4] Chen Z. X., Complex Differences and Difference Equations, Mathematics Monograph Series, Vol. 29, Science Press, Beijing, 2013.
[5] Halburd R. G., Korhonen R. J., Tohge K., Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc., 2014, 366:4267-4298.
[6] Hayman W. K., Meromorphic Functions, Oxford:Clarendon Press, 1964.
[7] Hayman W. K., Picard values of meromorphic functions and their derivatives, Ann. Math., 1959, 70:9-42.
[8] Laine I., Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, New York, 1993.
[9] Laine I., Yang C. C., Value distribution of difference polynomials, Proc. Japan Acad. Ser. A., 2007, 83:148-151.
[10] Liu K., Zeros of difference polynomials of meromorphic functions, Results Math., 2010, 57:365-376.
[11] Liu K., Laine I., A note on value distribution of difference polynomials, Bull. Aust. Math. Soc., 2010, 81:353-360.
[12] Liu K., Liu X. L., Yang L. Z., The zero distribution and uniqueness of difference-differential polynomials, Ann. Polon. Math., 2013, 109:137-152.
[13] Mues E., Über ein Problem von Hayman, Math. Z., 1979, 164:239-259.
[14] Milloux H., Les fonctions méromorphes et leurs dérivées, Paris, 1940.
[15] Wang Y. F., Fang M. L., Picard values and normal families of meromorphic functions with multiple zeros, Acta. Math. Sinica Engl. Ser., 1998, 14(1):17-26.
[16] Yamanoi K., Zeros of higher derivatives of meromorphic functions in the complex plane, Proc. London Math. Soc., 2013, 106(3):703-780.
[17] Yang C. C., Yi H. X., Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht, 2003.
[18] Zalcman L., On some problems of Hayman, Bar-Ilan University, 1995, preprint.
PDF(417 KB)

482

Accesses

0

Citation

Detail

Sections
Recommended

/