Gröbner-Shirshov Bases for the Cyclotomic Hecke Algebra of Type A

Munayim DILXAT, Abdukadir OBUL, Dong LIU

Acta Mathematica Sinica, Chinese Series ›› 2023, Vol. 66 ›› Issue (2) : 309-316.

PDF(363 KB)
PDF(363 KB)
Acta Mathematica Sinica, Chinese Series ›› 2023, Vol. 66 ›› Issue (2) : 309-316. DOI: 10.12386/A20210074

Gröbner-Shirshov Bases for the Cyclotomic Hecke Algebra of Type A

  • Munayim DILXAT1, Abdukadir OBUL1, Dong LIU2
Author information +
History +

Abstract

In this paper, we discuss the Gröbner--Shirshov bases and a linear bases of the cyclotomic Hecke algebra of type A. First, by computing the compositions, we construct a Gröbner--Shirshov bases of the cyclotomic Hecke algebra of type A. Then using this Gröbner--Shirshov bases and the composition-diamond lemma we give a linear bases of the cyclotomic Hecke algebra of type A.

Key words

Gröbner-Shirshov bases / cyclotomic Hecke algebra of type A / linear basis

Cite this article

Download Citations
Munayim DILXAT, Abdukadir OBUL, Dong LIU. Gröbner-Shirshov Bases for the Cyclotomic Hecke Algebra of Type A. Acta Mathematica Sinica, Chinese Series, 2023, 66(2): 309-316 https://doi.org/10.12386/A20210074

References

[1] Bergman G. M., The diamond lemma for ring theory, Advances in Mathematics, 1978, 29(2):178-218.
[2] Bokut L. A., Embeddings into simple associative algebras, Algebra and Logic, 1976, 15(2):73-90.
[3] Bokut L. A., Chen Y., Gröbner-Shirshov Bases Theory and Shirshov Algorithm, Novosibirsk, 2013.
[4] Bokut L. A., Chen Y., Chen Y., Gröbner-Shirshov bases for Lie algebras over a commutative algebra, Journal of Algebra, 2011, 337(1):82-102.
[5] Bokut L. A., Chen Y., Deng X., Gröbner-Shirshov bases for Rota-Baxter algebras, Siberian Mathematical Journal, 2010, 51(6):1237-1250.
[6] Bokut L. A., Chen Y., Li Y., Gröbner-Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras, Journal of Mathematical Sciences, 2008, 166(5):55-67.
[7] Bokut L. A., Chen Y., Li Y., Gröbner-Shirshov Bases for Categories, Operads and Universal Algebra, 2015.
[8] Bokut L. A., Chen Y., Mo Q., Gröbner-Shirshov bases for semirings, Journal of Algebra, 2013, 385(Complete):47-63.
[9] Bokut L. A., Chen Y., Mo Q., Gröbner-Shirshov bases and embedings of algebras, Internet J. Algebra Compute, 2010, 20(07):875-900.
[10] Bokut L. A., Chen Y., Mo Q., Gröbner-Shirshov bases for semirings, Journal of Algebra, 2013, 385(Complete):47-63.
[11] Bokut L. A., Chen Y., Zhang Z., Gröbner-Shirshov bases method for Gelfand-Dorfman-Novikov algebras, Journal of Algebra and Its Applications, 2017, 16(1):1750001(22 pages).
[12] Buchberger B., An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal (in German), Ph.D. thesis, University of Innsbruck, Austria, 1965.
[13] Chen Y., Chen Y., Gröbner-Shirshov bases for matabelian Lie algebras, Journal of Algebra, 2012, 358(358):143-161.
[14] Chen Y., Li Y., Some remarks for the Akivis algebras and the Pre-Lie algebras, Czechoslovak Math. J., 2011, 61(3):707-720.
[15] Hu J., Mathas A., Seminormal forms and cyclotomic quiver Hecke algebras of type A, Math. Ann., 2016, 364(3-4):1189-1254.
[16] Mikhalev A. A., The composition lemma for color Lie superalgebras and for Lie p-superalgebras, Contemp. Math., 1992, 131(2):91-104.
[17] Mikhalev A. A., Superalgebras L., Shirshov's composition techniques in Lie superalgebra (non-commutative Gröbner bases), Journal of Mathematical Sciences, 1996, 80(5):2153-2160.
[18] Mikhalev A. A., Zolotykh A. A., Standard Gröbner-Shirshov Bases of Free Algebras Over Rings, International Journal of Algebra and Computation, 1998, 08(06):9800034.
[19] Shirshov A. I., Some algorithmic problem for Lie algebras, Sibirsk. Mat., 1962, 3(2):292-296; English translation:SIGSAM Bull., 1999, 33(2):3-6.
[20] Shirshov A. I., Some algorithmic problems for -algebras, Sibirsk. Mat., 1962, 3(1):132-137.
PDF(363 KB)

353

Accesses

0

Citation

Detail

Sections
Recommended

/