Softplus Beta Negative Binomial Integer-valued GARCH Model

Le Le QI, Fu Kang ZHU

Acta Mathematica Sinica, Chinese Series ›› 2023, Vol. 66 ›› Issue (2) : 293-308.

PDF(732 KB)
PDF(732 KB)
Acta Mathematica Sinica, Chinese Series ›› 2023, Vol. 66 ›› Issue (2) : 293-308. DOI: 10.12386/A20210063

Softplus Beta Negative Binomial Integer-valued GARCH Model

  • Le Le QI, Fu Kang ZHU
Author information +
History +

Abstract

INGARCH models are often constructed based on Poisson distribution, negative binomial distribution and so on. Beta negative binomial (BNB) distribution is a flexible distribution. Recently, the related BNB-INGARCH model was proposed, whose conditional mean is linear, the parameters are restricted to non-negative and negative autocorrelation cannot be modeled. In this paper, we first propose the log-linear BNB-INGARCH model to solve the above problems, but the simple form of linear mean and ARMA-like structures are lost. So we further construct softplus BNB-INGARCH(p,q) model by using the softplus function, which is the main research object. When p and q are equal to 1, the stationarity and ergodicity of the model are proved and the conditions for the existence of the second moment are given. In addition, the strong consistency and the asymptotic normality of the maximum likehood estimator are shown. Finally, the analysis of real-data examples show the usefulness of the proposed model.

Key words

BNB distribution / INGARCH model / maximum likelihood estimation / asymptotic moment / softplus function

Cite this article

Download Citations
Le Le QI, Fu Kang ZHU. Softplus Beta Negative Binomial Integer-valued GARCH Model. Acta Mathematica Sinica, Chinese Series, 2023, 66(2): 293-308 https://doi.org/10.12386/A20210063

References

[1] Ahmada A., Francq C., Poisson QMLE of count times series models, Journal of Time Series Analysis, 2016, 37(3):291-314.
[2] Christou V., Fokianos K., Quasi-likelihood inference for negative binomial time series models, Journal of Time Series Analysis, 2014, 35(1):55-78.
[3] Davis R. A., Wu R., A negative binomial model for time series of counts, Biometrika, 2009, 96(3):735-749.
[4] Doukhan P., Neumann M. H., Absolute regularity of semi-contractive GARCH-type processes, Journal of Applied Probability, 2019, 56(1):91-115.
[5] Dugas C., Bengio Y., Bélisle F., et al., Incorporating second-order functional knowledge for better option pricing. In Leen et al. (eds), Proceedings of the 13th International Conference on Neural Information Processing Systems (NIPS'00), MIT Press, Cambridge, 2000, 451-457.
[6] Ferland R., Latour A., Oraichi D., Integer-valued GARCH process, Journal of Time Series Analysis, 2006, 27(6):923-942.
[7] Fokianos K., Rahbek A., Tjøstheim D., Poisson autoregression, Journal of the American Statistical Association, 2009, 104(488):1430-1439.
[8] Fokianos K., Tjøstheim D., Log-linear Poisson autoregression, Journal of Multivariate Analysis, 2011, 102(3):563-578.
[9] Fox A. J., Outliers in time series, Journal of the Royal Statistical Society Series B, 1972, 34(3):350-363.
[10] Gorgi P., Beta-negative binomial auto-regressions for modelling integer-valued time series with extreme observations, Journal of the Royal Statistical Society Series B, 2020, 82(5):1325-1347.
[11] Justel A., Peña D., Tsay R.. Detection of outlier patches in autoregressive time series, Statistica Sincia, 2001, 11(3):651-673.
[12] Li Z. Q., Road extraction from remote sensing images using parallel softplus networks, Journal of the Indian Society of Remote Sensing, 2020, 48(11):1645-1650.
[13] Mei H. Y., Eisner J., The neural Hawkes process:a neurally self-modulating multivariate point process, In:von Luxburg et al. (eds), Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17), Curran Associates Inc., 2017, 6757-6767.
[14] Nair V., Hinton G. E., Rectified linear units improve restricted Boltzmann machines, In:Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 2010, 807-814.
[15] Shang H., Zhang B. B., Outliers detection in INAR (1) time series, Journal of Physics:Conference Series, 2018, 1053:012094.
[16] Wang Z. L., One mixed negative binomial distribution with application, Journal of Statistical Planning and Inference, 2011, 141(3):1153-1160.
[17] Weiß C. H., Modelling time series of counts with overdispersion, Statistical Methods and Applications, 2009, 18(4):507-519.
[18] Weiß C. H., Zhu F. K., Hoshiyar A., Softplus INGARCH Models, Statistica Sinica, 2022, 32(2), forthcoming, https://doi.org/10.5705/ss.202020.0353
[19] Zhang Q., Zhou M. Y., Permuted and augmented stick-breaking Bayesian multinomial regression, Journal of Machine Learning Research, 2018, 18:204.
[20] Zhao H. Z., Liu F. X., Li L. Y., et al., A novel softplus linear unit for deep convolutional neural networks, Applied Intelligence, 2018, 48(7):1707-1720.
[21] Zhu F. K., A negative binomial integer-valued GARCH model, Journal of Time Series Analysis, 2011, 32(1):54-67.
[22] Zhu F. K., Wang D. H., Estimation and testing for a Poisson autoregressive model, Metrika, 2011, 73(2):211-230.
[23] Zhu F. K., Wang D. H., Empirical likelihood for linear and log-linear INGARCH models, Journal of the Korean Statistical Society, 2015, 44(1):150-160.
PDF(732 KB)

393

Accesses

0

Citation

Detail

Sections
Recommended

/