Ramanujan Expansions of Arithmetic Functions of Several Variables over Fq[T]

Tian Fang QI

Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (5) : 891-906.

PDF(458 KB)
PDF(458 KB)
Acta Mathematica Sinica, Chinese Series ›› 2022, Vol. 65 ›› Issue (5) : 891-906. DOI: 10.12386/A20210053

Ramanujan Expansions of Arithmetic Functions of Several Variables over Fq[T]

  • Tian Fang QI
Author information +
History +

Abstract

Combing Wintner, Delange, Ushiroya and Tóth's works from 1976 to 2017, we have that the multi-variable arithmetic functions defined on integer ring can be expanded through the Ramanujan sums. This is an analogue of the Fourier expansion for periodic functions in the classical analysis. In this paper we further investigate the properties of Ramanujan sums in the polynomial ring Fq[T], and show that the multi-variable arithmetic functions defined on Fq[T] can also be expanded through the polynomial Ramanujan sums and the unitary polynomial Ramanujan sums.

Key words

arithmetic function / Ramanujan sum / polynomial ring / finite fields / Zeta function

Cite this article

Download Citations
Tian Fang QI. Ramanujan Expansions of Arithmetic Functions of Several Variables over Fq[T]. Acta Mathematica Sinica, Chinese Series, 2022, 65(5): 891-906 https://doi.org/10.12386/A20210053

References

[1] Apostol T. M., Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[2] Carlitz L., The singular for sums of squares of polynomials, Duke Math. J., 1947, 14:1105-1120.
[3] Cohen E., An extension of Ramanujan's sum, Duke Math. J., 1949, 16:85-90.
[4] Cohen E., Arithmetic functions associated with the unitary divisors of an integer, Math. Z., 1960, 74:66-80.
[5] Delange H., On Ramanujan expansions of certain arithmetic functions, Acta Arith., 1976, 31:259-270.
[6] Droll A., A classification of Ramanujan unitary Cayley graphs, Electron. J. Comb., 2010, 17(1):N29.
[7] Rosen M., Number Theory in Function Fields, GTM, Vol. 210, Springer, New York, 2002.
[8] Qi T. F., A Survey on the results of Ramanujan expansion (in Chinese), Pure Math. J., 2020, 10(4):339-344.
[9] Tóth L., Ramanujan expansions of arithmetic functions of several variables, Ramanujan J., 2018, 47(3):589-603.
[10] Ushiroya N., Ramanujan-Fourier series of certain arithmetic functions of two variables, Hardy-Ramanujan J., 2016, 39:1-20.
[11] Wintner A., Eratosthenian Averages, Waverly Press, Baltimore, 2017.
[12] Zheng Z. Y., On the polynomial Ramanujan sums over finite fields, Ramanujan J., 2018, 46(3):863-898.
PDF(458 KB)

955

Accesses

0

Citation

Detail

Sections
Recommended

/