数学学报    2011 54 (2): 219-226   ISSN: 0583-1431  CN: 11-2038/O1  

基于随机矩阵的差分代换算法的完备化
徐嘉1, 姚勇2
1. 西南民族大学计算机科学与技术学院 成都 610041;
2. 中国科学院成都计算机应用研究所 成都 610041
收稿日期 2010-05-03  修回日期 2010-09-30  网络版发布日期 null
参考文献  


[1] Yang L., Solving Harder Problems with Lesser Mathematics, Proceedings of the 10th Asian Technology Conference in Mathematics, ATCM Inc, 2005, 37-46.

[2] Yang L., Difference Substitution and Automated Inequality Proving, J. of Guangzhou University (Natural Science Edition), 2006, 5(2): 1-7.

[3] Yang L., Xia B. C., Automated Proving and Discoverering on Inequalities, Beijing: Science Press, 2008, 22: 174.

[4] Yao Y., Successive Difference Substitution Based on Column Stochastic Matrix and Mechanical Decision for Positive Semi-definite Forms, Scientia Sinica Mathematica, 2010, 40(3): 251-264 (in Chinese). (Also see http://arxiv.org/abs/0904.4030v3)

[5] Yang L., Yao Y., Difference substitution matrices and decision on nonnegativity of polynomials, J. Sys. Sci. & Math. Scis., 2009, 29(9): 1169-1177 (in Chinese).

[6] Wu W. T., On Global-Optimization Problems, Proc. ASCM‘98, Lanzhou: Lanzhou University Press, 1998: 135-138 (in Chinese).

[7] Wu W. T., Mathematics Mechanization, Beijing: Science Press, 2003 (in Chinese).

[8] Yang L., A Symbolic Algorithm for Global Optimization and Finiteness Principle, In: Lin D. D. et al eds, Mathematics and Mathematics Mechanization, Jinan: Shandong Educational Publishing House, 2001: 210- 220 (in Chinese).

[9] Yang L., Xia S. H., An inequality-proving program applied to global optimization, Proceedings of ATCM 2000, W-C.Yang et al (eds.), ATCM, Inc., Blacksburg, 2000: 40-51. (Also see http://epatcm.any2any.us/EP/EP2000/ATCMP208/fullpaper.pdf)

[10] Joachim V. Z. G., Jurgen G., Modern Computer Algebra, Combridge: Combridge University Press, 1999: 369-370.

[11] Basu S., Pollack R., Roy M. F., Algorithms in Real Algebraic Geometry (2nd), New York, Berlin, Heidelberg: Springer-Verlag, 2006, 352.

[12] Collins G. E., Akritas A. G., Polynomial Real Root Isolation Using Descartes’ Rule of Signs, Poceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computations, New York: Yorktown Heights, 1976: 272-275.

[13] Parrilo P. A., Sturmfels B., Minimizing Polynomial Functions, arXiv: math/0103170.

[14] Yang L., Zhang J., A Practical program of automated proving for a class of geometric inequalities, In: Richter-Gebert J, Wand D eds. Automated Deduction in Geometry, LNAI 2061, Berlin: Springer-Verlag, 2001: 41-57.

[15] Yang L., Xia S. H., Automated Proving for a class of constructive geometric inequalities, Chinese J. Computer, 2003, 26(7): 769-778 (in Chinese).

[16] Canny J., The Complexity of Robot Motion Planning, Massachusetts: MIT Press, 1987.

[17] Xu J., Yao Y., Rationalizing Algorithm and Automated Proving for a Class of Inequalities Involving Radicals, Chinese J. Computer, 2008, 31(1): 24-31.

[18] Yao Y., Xu J., Descartes’ Law of Signs for Generalized Polynomials and Its Application in the Method of Descent, Acta Mathematica Sinica, Chinese Series, 2009, 52(4): 625-630.

[19] Chen S. L., Yao Y., Schur Subspace of Real Symmetric Forms and Application, Acta Mathematica Sinica, Chinese Series, 2007, 50(6): 1331-1348.

[20] Wang W. L., Wen J. J., Shi H. L., On the optimal values for inequalities involving power means, Acta Mathematica Sinica, Chinese Series, 2004, 47(6): 1053-1062.

[21] Chen S. L., Huang F. J., Schur decomposition for symmetric ternary forms and Rradable proof to inequalities, Acta Mathematica Sinica, Chinese Series, 2006, 49(3): 491-502.


通讯作者: