摘要
考虑如下一类含临界指数的类p-Laplacian方程-div(a(|Du|~p)|Du|~(p-2)Du)=:-- |u|~(p~*-2)u+λf(x,u),u∈W_0~(1,p)(Ω),其中Ω∈R~N(N≥2)为有界光滑区域,a:R~+→R为连续函数.由于问题失去紧性,对Palais-Smale序列的分析需要一点技巧.本文利用Lions的集中紧原理,证明了相应泛函I_λ满足(PS)_c条件,再应用Clark临界点定理和亏格的性质,证明了方程无穷多解的存在性.进一步,得到当λ充分小时一个特殊的特征函数的存在性.
Abstract
We consider the p-Laplacian-like equation with critical exponent:-div (a(|Du|~p)|Du|~(p-2)Du)=|u|~(p~(*-2))u+λf(x,u),u∈W_0~(1,p)(Ω),whereΩ∈R~N (N≥2) is a bounded smooth domain and a is a smooth function from R~+ to R.The solutions are obtained by variational methods,the analysis of Palais-Smale sequences requires suitable generalizations of the techniques involved in the study of the corresponding quasilinear problem with lack of compactness.Using the concentration compactness principle of Lions,the result that the associated functional I_λsatisfies the (PS)_c con- dition is proved.Applying the Clark's critical theory and the properties of genus,the existence of infinitely many solutions of the problem is obtained.Furthermore,the existence of a special eigenfunction whenλ>0 small enough is proved.
关键词
类p-Laplacian方程 /
集中紧原理 /
临界指数
{{custom_keyword}} /
李周欣;沈尧天;.
含临界指数的类p-Laplacian方程无穷多解的存在性. 数学学报, 2008, 51(4): 663-670 https://doi.org/10.12386/A2008sxxb0078
Zhou Xin LI; Yao Tian SHEN.
Existence of Infinitely Many Solutions for p-Laplacian-Like Equation with Critical Exponent. Acta Mathematica Sinica, Chinese Series, 2008, 51(4): 663-670 https://doi.org/10.12386/A2008sxxb0078
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}