卷积型Calder\'{o}n-Zygmund算子的新算法

杨占英杨奇祥

数学学报 ›› 2008, Vol. 51 ›› Issue (6) : 1061-107.

数学学报 ›› 2008, Vol. 51 ›› Issue (6) : 1061-107. DOI: 10.12386/A2008sxxb0123
论文

卷积型Calder\'{o}n-Zygmund算子的新算法

    杨占英杨奇祥
作者信息 +

Convolution-Type Calder\'{o}n-Zygmund Operators and Approximation

    Zhan Ying YANGQi Xiang YANG
Author information +
文章历史 +

摘要

Beylkin-Coifman-Rokhlin (B-C-R)算法表明算子通常可用2n维小波来分析, 而本文用 基于n维小波来引入一种新方法考虑卷积型 Calder\'{o}n-Zygmund (C-Z)算子. 利用此方法来研究算子的逼近, 此逼近算法不仅比 B-C-R 算法简单而且有更快的逼近速度. 还证明了 H\"{o}rmander 条件能够保证算子在 Besov 空间B˙p0,q (1p,q) 和 Triebel--Lizorkin 空间$\dot{F}_p^{0,q}(1

Abstract

Beylkin-Coifman-Rokhlin (B-C-R) algorithm says that an operator can be analyzed by 2n-dimensional wavelets, but here we provide a new method based on n-dimensional wavelets to consider convolution-type Calder\'{o}n-Zygmund (C-Z) operators. We apply this idea to the approximation; our approximation algorithm is much simpler than B-C-R algorithm and our approximation speed is much faster. By the way, we prove that H\"{o}rmander condition can ensure the continuity on Besov spaces B˙p0,q (1p,q) and on Triebel-Lizorkin spaces $\dot{F}_p^{0,q}(1

关键词

卷积型算子 / 逼近 / 小波

Key words

convolution-type operators / approximation / wavelets

引用本文

导出引用
杨占英杨奇祥. 卷积型Calder\'{o}n-Zygmund算子的新算法. 数学学报, 2008, 51(6): 1061-107 https://doi.org/10.12386/A2008sxxb0123
Zhan Ying YANGQi Xiang YANG. Convolution-Type Calder\'{o}n-Zygmund Operators and Approximation. Acta Mathematica Sinica, Chinese Series, 2008, 51(6): 1061-107 https://doi.org/10.12386/A2008sxxb0123

314

Accesses

0

Citation

Detail

段落导航
相关文章

/