AKNS-KN 孤子方程族的可积耦合与Hamilton结构

张玉峰Fu Kui Guo

数学学报 ›› 2008, Vol. 51 ›› Issue (5) : 889-900.

数学学报 ›› 2008, Vol. 51 ›› Issue (5) : 889-900. DOI: 10.12386/A2008sxxb0104
论文

AKNS-KN 孤子方程族的可积耦合与Hamilton结构

    张玉峰Fu Kui Guo
作者信息 +

Integrable Couplings and Hamiltonian Structure of the AKNS-KN Soliton-Equation Hierarchy

    Yu Feng ZHANGFu Kui Guo
Author information +
文章历史 +

摘要

首先通过引入高维圈代数, 在零曲率方程框架下得到了AKNS-KN孤子族(记为AKNS-KN-SH) 的一个新的 可积耦合系统;再由二次型恒等式得到了该系统的双-Hamilton结构形式. 最后引进了一个新的Lie代数A4, 可通过建立 其不同的圈代数与等价的列向量Lie代数, 研究AKNS-KN-SH的多分量可积耦合系统及其Hamilton结构.

Abstract

By introducing a higher-dimensional loop algebra, a new integrable coupling of the AKNS-KN soliton hierarchy (called AKNS-KN-SH, for short) is obtained under the framework of zero curvature equations, whose Hamiltonian structure is worked out by using the quadratic-form identity. Finally we give a new Lie algebra A4 so that its various loop algebras and its equivalent colummn-vector Lie algebra are introduced respectively for which multi-component integrable couplings and their Hamiltonian structure of the the AKNS-KN-SH could be generated.

关键词

圈代数 / 可积耦合 / Hamilton结构

引用本文

导出引用
张玉峰Fu Kui Guo. AKNS-KN 孤子方程族的可积耦合与Hamilton结构. 数学学报, 2008, 51(5): 889-900 https://doi.org/10.12386/A2008sxxb0104
Yu Feng ZHANGFu Kui Guo. Integrable Couplings and Hamiltonian Structure of the AKNS-KN Soliton-Equation Hierarchy. Acta Mathematica Sinica, Chinese Series, 2008, 51(5): 889-900 https://doi.org/10.12386/A2008sxxb0104

244

Accesses

0

Citation

Detail

段落导航
相关文章

/