二维无旋可压缩Euler方程解的几何爆破

尹会成;郑琴;金树泽

数学学报 ›› 2003, Vol. 46 ›› Issue (2) : 351-360.

数学学报 ›› 2003, Vol. 46 ›› Issue (2) : 351-360. DOI: 10.12386/A2003sxxb0048
论文

二维无旋可压缩Euler方程解的几何爆破

    尹会成;郑琴;金树泽
作者信息 +

The Blowup of Solutions for Two Dimensional Irrotational Compressible Euler Equations

    Hui Cheng YIN,Qin ZHENG,Shu Ze
Author information +
文章历史 +

摘要

对二维无旋可压缩Euler方程,当其初值是一个常态的小扰动时,我们证明 了ρ,ν的一阶导数在爆破时刻同时破裂,从而对无旋情形证明了Alinhac S.的猜测.

Abstract

For two dimensional irrotational compressible Euler equations with initial data that is a small perturbation from a constant state, we prove that the first order derivatives of ρ, v blow up at the blowup time while ρ, v remain continuous. In particular, in the irrotational case we prove Alinhac's S. conjecture.

关键词

Nash-Moser迭代 / 交换子方法 / 生命区间

引用本文

导出引用
尹会成;郑琴;金树泽. 二维无旋可压缩Euler方程解的几何爆破. 数学学报, 2003, 46(2): 351-360 https://doi.org/10.12386/A2003sxxb0048
Hui Cheng YIN,Qin ZHENG,Shu Ze. The Blowup of Solutions for Two Dimensional Irrotational Compressible Euler Equations. Acta Mathematica Sinica, Chinese Series, 2003, 46(2): 351-360 https://doi.org/10.12386/A2003sxxb0048

215

Accesses

0

Citation

Detail

段落导航
相关文章

/