模任意子Hopf代数的商余代数的诱导作用

张辉;王志玺

数学学报 ›› 2002, Vol. 45 ›› Issue (3) : 589-592.

PDF(334 KB)
PDF(334 KB)
数学学报 ›› 2002, Vol. 45 ›› Issue (3) : 589-592. DOI: 10.12386/A2002sxxb0077
论文

模任意子Hopf代数的商余代数的诱导作用

    张辉;王志玺
作者信息 +

Induced Actions of Quotient Coalgebras Relative to Arbitrary Hopf Subalgebras

    Hui ZHANG(1),Zhi Xi WANG(2)
Author information +
文章历史 +

摘要

设 H是域 k上的有限维 Hopf代数,K为 H的任意子 Hopf代数,A是右 H-余模代数.设 =(H/K+ H)*和,且有 c∈A,t ·c=1.本 文刻划了 A作为 A# *-模的投射性且证明了:如果A/AH*是 H-Frobenius扩张, 则 A /AH*是 K-Frobenius扩张;如果 A/AH*是 H-Galois扩张,则 A */AH*是 K-Galois扩张.

Abstract

Let H be a finite dimensional Hopf algebra over a field k, K a Hopf subalgebra of H and A an H-comodule algebra. In this paper, we characterize the projectivity of A as an A# *-module and show that if and A/AH* is H-Frobenius, then A */AH* is K-Frobenius. In particular, if A/AH* is H-Galois, then A */AH*is K-Galois, where and

关键词

Smash积 / Galois扩张 / 余模代数 / Frobenius扩张

引用本文

导出引用
张辉;王志玺. 模任意子Hopf代数的商余代数的诱导作用. 数学学报, 2002, 45(3): 589-592 https://doi.org/10.12386/A2002sxxb0077
Hui ZHANG(1),Zhi Xi WANG(2). Induced Actions of Quotient Coalgebras Relative to Arbitrary Hopf Subalgebras. Acta Mathematica Sinica, Chinese Series, 2002, 45(3): 589-592 https://doi.org/10.12386/A2002sxxb0077
PDF(334 KB)

243

Accesses

0

Citation

Detail

段落导航
相关文章

/