多线性算子在Herz型Hardy空间上的有界性

唐林;杨大春

数学学报 ›› 2001, Vol. 44 ›› Issue (5) : 861-868.

PDF(494 KB)
PDF(494 KB)
数学学报 ›› 2001, Vol. 44 ›› Issue (5) : 861-868. DOI: 10.12386/A2001sxxb0111
论文

多线性算子在Herz型Hardy空间上的有界性

    唐林;杨大春
作者信息 +

Boundedness of Multilinear Operators in Herz-Type Hardy Space

    Lin TANG,Da Chun YANG
Author information +
文章历史 +

摘要

本文证明了Rn上奇异积分乘积之有限和的多线性算子是从HKq1α1,p1(Rn)×… ×HKqkαk,pk(Rn)到HKqα,p(Rn)有界的,如果它满足由目标空间所确定的直到一定阶的消失矩条件.这些多线性算子所满足的消失矩条件,当αj≥0时也是必要的.而且,这里所考虑的奇异积分包括Calderon-Zygmund奇异积分及任意阶的分数次积分.

Abstract

This paper, the authors prove that the multilinear operators of finite sums of products of singular integrals on Rn are bounded from HK q1α1,p1 (Rn) ×…× HKqkαk,pk(Rn) into HK qα,p(Rn) if they have vanishing moments up to a certain order dictated by the target spaces. These conditions on vanishing moments satisfying by the multilinear operators are also necessary when αj 0 and the singular integrals considered here include the Calderon-Zygmund singular integrals and the fractional integrals of any orders.

关键词

Hardy空间 / 分数次积分 / Calderón-Zygmund算子 / 多线性算子 / 乘子

引用本文

导出引用
唐林;杨大春. 多线性算子在Herz型Hardy空间上的有界性. 数学学报, 2001, 44(5): 861-868 https://doi.org/10.12386/A2001sxxb0111
Lin TANG,Da Chun YANG. Boundedness of Multilinear Operators in Herz-Type Hardy Space. Acta Mathematica Sinica, Chinese Series, 2001, 44(5): 861-868 https://doi.org/10.12386/A2001sxxb0111
PDF(494 KB)

222

Accesses

0

Citation

Detail

段落导航
相关文章

/