关于超曲面上测度的Fourier变换的零点

孙利民

数学学报 ›› 1995, Vol. 38 ›› Issue (1)

数学学报 ›› 1995, Vol. 38 ›› Issue (1) DOI: 10.12386/A1995sxxb0018
论文

关于超曲面上测度的Fourier变换的零点

    孙利民
作者信息 +

About the Null Set of the Fourier Transform for a Surface Carried Measure

Author information +
文章历史 +

摘要

设S是Euclid空间R ̄n(n≥2)中一个紧闭光滑超曲面,它关于原点中心对称,其Gauss曲率处处非零。设dμ是S上一个光滑正测度,是其Fourier变换。本文证明,的零点集是一个紧集与可列多个微分同胚于单位球面的超曲面之无交并.

Abstract

Let S R ̄n(n≥2)be a compact smooth hypersurface without boundary. Assumethat S is centrally symmetric with respect to the origin,and that the Gaussian curvature of S isnon-zero. Let dμ be a smooth positive measure on S,and dμ be the Fourier transform of dμ,Weshow that the null set of is a disjoint union of a compact set and countably many hyper-surfaceswhich are all diffemorphic to S ̄(n-1)。

关键词

正测度 / 超曲面 / Fourier变换 / 零点

引用本文

导出引用
孙利民. 关于超曲面上测度的Fourier变换的零点. 数学学报, 1995, 38(1) https://doi.org/10.12386/A1995sxxb0018
About the Null Set of the Fourier Transform for a Surface Carried Measure. Acta Mathematica Sinica, Chinese Series, 1995, 38(1) https://doi.org/10.12386/A1995sxxb0018

Accesses

Citation

Detail

段落导航
相关文章

/