子群为拟正规或自正规的有限群

张勤海; 王俊新

数学学报 ›› 1995, Vol. 38 ›› Issue (3)

数学学报 ›› 1995, Vol. 38 ›› Issue (3) DOI: 10.12386/A1995sxxb0054
论文

子群为拟正规或自正规的有限群

    张勤海; 王俊新
作者信息 +

Finite Groups with Only Quasinormal and Selfnormal Subgroups

Author information +
文章历史 +

摘要

本文研究了每个子群为拟正规或自正规的有限群,给出了这类群的完全分类,主要结果为定理G的每个子群为拟正规或自正规当且仅当G为下列情形之一:Ⅰ)G为拟Hamilton群,Ⅱ)G=HP,其中H为G的正规abelianp'-Hall子群.P=〈x〉∈Syl_p(G)。〈x ̄p〉=O_p(G)=Z(G),x在H上诱导H的一个p阶无不动点的幂自同构.p为|G|的最小素因子。由此定理可得文[1]所获得的定理。

Abstract

In this paper authors study such a finite group in which each subgroup is eitherquasinormal or selfuormal and characterize this kind of finite groups. The main result is Theorem Every subgroup of group G is either quasinormal or selfuormal if and only ifG is precisely one of the followingⅠ)G is a quasi-Hamilton group.Ⅱ)G=HP, where H is a normal abelian p'-Hall subgrou.P=〈x〉∈Syl_p(G),〈x ̄p〉=O_p(G)=Z(G)and x induces a fixed-point-free power automorphisim of order p on H. p is thesmallest prime factor of |G|.The theorem in paper[1]can be obtained by the above theorem.

关键词

无不动点的幂自同构 / 内abelian群 / 自正规子群 / 拟正规子群

引用本文

导出引用
张勤海; 王俊新. 子群为拟正规或自正规的有限群. 数学学报, 1995, 38(3) https://doi.org/10.12386/A1995sxxb0054
Finite Groups with Only Quasinormal and Selfnormal Subgroups. Acta Mathematica Sinica, Chinese Series, 1995, 38(3) https://doi.org/10.12386/A1995sxxb0054

Accesses

Citation

Detail

段落导航
相关文章

/