蕴涵格及其Fuzzy拓扑表现定理

王国俊

数学学报 ›› 1999, Vol. 42 ›› Issue (1) : 133-140.

PDF(551 KB)
PDF(551 KB)
数学学报 ›› 1999, Vol. 42 ›› Issue (1) : 133-140. DOI: 10.12386/A1999sxxb0021
论文

蕴涵格及其Fuzzy拓扑表现定理

    王国俊
作者信息 +

Implication Lattices and Their Fuzzy Implication Space Representation Theorem

    Guo Jun WANG
Author information +
文章历史 +

摘要

以L-Lindenbaum代数为背景,引入了蕴涵格与正则蕴涵格的概念,讨论了其基本性质,引入了Fuzzy蕴涵空间的概念,为点集拓扑学中零维空间概念的推广.建立了正则蕴涵格的Fuzzy蕴涵空间表现定理,以此为基础可以给出著名的Stone表现定理的另一种证明.

Abstract

Taking the concept of L*-Lindenbaum algebra as background, this paper introduced the concepts of implication lattice and regular implication lattice and discussed their basic properties. On the other hand, this paper introduced the concept of fuzzy implication space that is generallization of the concept of zero-dimensional space in point set topology. The representation theorem of regular implication lattices by means of fuzzy implication spaces had been established, that can be seen as, in certain sense, a generalization of the famous Stone’s representation theorem.

关键词

正则蕴涵格 / 蕴涵格 / R_0-语义Lindenbaum代数 / 表现定理 / 超滤 / Fuzzy蕴涵空间

引用本文

导出引用
王国俊. 蕴涵格及其Fuzzy拓扑表现定理. 数学学报, 1999, 42(1): 133-140 https://doi.org/10.12386/A1999sxxb0021
Guo Jun WANG. Implication Lattices and Their Fuzzy Implication Space Representation Theorem. Acta Mathematica Sinica, Chinese Series, 1999, 42(1): 133-140 https://doi.org/10.12386/A1999sxxb0021
PDF(551 KB)

343

Accesses

0

Citation

Detail

段落导航
相关文章

/