负曲率流形上给定数量曲率的共形形变

胡泽军

数学学报 ›› 1999, Vol. 42 ›› Issue (2)

PDF(447 KB)
PDF(447 KB)
数学学报 ›› 1999, Vol. 42 ›› Issue (2) DOI: 10.12386/A1999sxxb0035
论文

负曲率流形上给定数量曲率的共形形变

    胡泽军
作者信息 +

Conformal Deformations for Prescribing Scalar Curvature on Riemanaian Manifolds with Negative Curvature

    Ze Jun HU
Author information +
文章历史 +

摘要

本文研究具强负曲率Cartan-Hadamard流形M~n(n≥3)上给定数量曲率函数S的共形形变问题.利用上下解方法,并通过精心构造上解,我们获得了当完备的共形形变度量存在时,函数S在无穷远附近的最佳渐近性态.在较一般情况下,我们还给出了共形数量曲率方程解的渐近估计.

Abstract

We study the conformal deformation for prescribing scalar curvature function S on Cartan-Hadamard manifold Mm (n 3) with strongly negative curvature.By employing the super-subsolution method and a careful construction for the supersolution, we obtain the best possible asymptotic behavior for S near infinity so thatthe problem of complete conformal deformal is solvable. In the more general cases,we prove an asymptotic estimation oil the solutions of the conformal scalar curvatureequation.

关键词

数量曲率 / 完备度量 / 共形形变 / 上下解方法

引用本文

导出引用
胡泽军. 负曲率流形上给定数量曲率的共形形变. 数学学报, 1999, 42(2) https://doi.org/10.12386/A1999sxxb0035
Ze Jun HU. Conformal Deformations for Prescribing Scalar Curvature on Riemanaian Manifolds with Negative Curvature. Acta Mathematica Sinica, Chinese Series, 1999, 42(2) https://doi.org/10.12386/A1999sxxb0035
PDF(447 KB)

286

Accesses

0

Citation

Detail

段落导航
相关文章

/