摘要
<正> 它被称为 a 关于 f(z)的 Valiron 亏量.当△(a,f)>0时,则 a 称为 f(z)的 Valiron 亏值.对于亚纯函数 f(z),其 Valiron 亏值构成怎样的集合?Valiron,Littlewood,Nevanlin-na,Frostman 和 Ahlfors 等进行了一系列研究,结果不断趋于精密.1970年,Hyl-lengren 获得了十分精确的定理.他证明了对于有穷级亚纯函数 f(z)和位于(0,1)内的任意数δ,使△(a,f)>δ成立的复数 a 必为一个有穷的μ测度集.即存在一列复数 a_n与一正数σ,使上述集合含于
杨乐.
亚纯函数的拟亏值. 数学学报, 1984, 27(2): 249-256 https://doi.org/10.12386/A1984sxxb0020
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}