Banach空间上p-fusion框架的若干等价描述

林丽琼, 张云南

数学学报 ›› 2021, Vol. 64 ›› Issue (2) : 301-310.

PDF(409 KB)
PDF(409 KB)
数学学报 ›› 2021, Vol. 64 ›› Issue (2) : 301-310. DOI: 10.12386/A2021sxxb0027
论文

Banach空间上p-fusion框架的若干等价描述

    林丽琼1, 张云南2
作者信息 +

Some Equivalent Descriptions of p-fusion Frames on Banach Spaces

    Li Qiong LIN1, Yun Nan ZHANG2
Author information +
文章历史 +

摘要

本文说明Banach空间上p-fusion框架和p-框架有紧密联系.应用分析算子和合成算子给出p-fusion Bessel序列、p-fusion框架和q-fusion Riesz基的等价描述.

Abstract

We describe a close relation between the p-fusion frames and the p-frames on Banach spaces. Using the analysis operators and the synthesis operators, we provide the equivalent descriptions of the p-fusion Bessel sequences, p-fusion frames and q-fusion Riesz bases.

关键词

Banach空间 / p-fusion框架 / q-fusion Riesz基

Key words

Banach spaces / p-fusion frames / q-fusion Riesz bases

引用本文

导出引用
林丽琼, 张云南. Banach空间上p-fusion框架的若干等价描述. 数学学报, 2021, 64(2): 301-310 https://doi.org/10.12386/A2021sxxb0027
Li Qiong LIN, Yun Nan ZHANG. Some Equivalent Descriptions of p-fusion Frames on Banach Spaces. Acta Mathematica Sinica, Chinese Series, 2021, 64(2): 301-310 https://doi.org/10.12386/A2021sxxb0027

参考文献

[1] Aldroubi A., Sun Q., Tang W., p-frames and shift invariant subspaces of Lp, J. Fourier Anal. Appl., 2001, 7(1):1-22.
[2] Bachoc C., Ehler M., Tight p-fusion frames, Appl. Comput. Harmon. Anal., 2013, 35:1-15.
[3] Casazza P. G., The art of frame theory, Taiwanese J. Math., 2000, 4(2):129-201.
[4] Casazza P. G., Christensen O., Stoeva D. T., Frame expansions in separable Banach spaces, J. Math. Anal. Appl., 2005, 307:710-723.
[5] Casazza P. G., Han D., Larson D. R., Frames for Banach spaces, Contemp. Math., 1999, 247:149-182.
[6] Cassaza P. G., Kutyniok G., Frames of subspaces, Contemp. Math., 2004, 345:87-113.
[7] Casazza P. G., Kutyniok G., Li S., Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 2008, 25:114-132.
[8] Casazza P. G., Tremain J. C., The Kadison-Singer problem in mathematics and engineering, Proc. Natl. Acad. Sci. USA, 2006, 103(7):2032-2039.
[9] Christensen O., An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003.
[10] Christensen O., Stoeva D. T., p-frames in separable Banach spaces, Adv. Comput. Math., 2003, 18:117-126.
[11] Daubechies I., Grossmann A., Meyer Y., Painless nonorthogonal expansions, J. Math. Phys., 1986, 27:1271-1283.
[12] Duffin R. G., Schaeffer A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 1952, 72:341-366.
[13] Fornasier M., Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl., 2004, 289:180199.
[14] Grochenig K., Describing functions:atomic decompositions versus frames, Monatsh. Math., 1991, 112(1):1-42.
[15] Han D., Larson D. R., Frames, bases and group representations, Mem. Amer. Math. Soc., 2000, 147.
[16] Han D., Larson D. R., Liu B., et al., Operator-valued measures, dilations, and the theory of frames, Mem. Amer. Math. Soc., 2014, 229.
[17] Liu B., Liu R., Zheng B. T., Parseval p-frames and the Feichtinger conjecture, J. Math. Anal. Appl., 2015, 424:248-259.

基金

国家自然科学基金资助项目(11971108)

PDF(409 KB)

694

Accesses

0

Citation

Detail

段落导航
相关文章

/