
bp(2)空间中的等距映射
The Isometry on bp(2) Space
度量与线性性质是赋范空间的重要性质,因此,研究线性算子与等距算子的关系成为了泛函分析领域重要的研究课题.本文首先研究一类特殊的赋准范空间,即bp(2)空间的重要性质.然后给出bp(2)空间单位球面间满等距映射的表示定理及延拓性质.
Metric and linear properties are significant properties of normed spaces, so the study of the relationship between linear operators and isometric operators has become an important research topic in the field of functional analysis. In this paper, we will study a special F-space, bp(2) space, and give the representation theorem for the onto isometric mapping on the unit sphere of the bp(2) space, then give a result about the isometric linear extension from unit sphere in the bp(2).
二维bp(2)空间 / 等距映射 / 线性延拓 / 表现定理 {{custom_keyword}} /
2-dimensional space bp(2) / isometry / linear extension / representation theorem {{custom_keyword}} /
[1] An G. M., Isometries on unit sphere of (Lβn), J. Math. Anal. Appl., 2005, 301:249-254.
[2] Baker J. A., Isometries in normed space, Amer. Math. Monthly, 1971, 78:655-658.
[3] Charzynski Z., Sur les transformationes isométriques des espace du type(F), Studia Math., 1953, 13:94-121.
[4] Cheng L. X., Dong Y. B., On a generalized Mazur-Ulam question:Extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 2011, 377:464-470.
[5] Diestel J., Geometry of Banach Spaces (Lecture Notes in Mathematics:485), Springer-Berlag, Berlin, 1975.
[6] Ding G. G., On the extension of isometries between unit spheres of E and C(Ω), Acta Math. Sinica, Engl. Ser., 2003, 19(4):793-800.
[7] Ding G. G., The isometric extension of an into mapping from the unit sphere S(l(Γ)) to the unit sphere S(E), Acta Math. Sci. Engl. Ed., 2009, 29B(3):469-479.
[8] Ding G. G., The isometric extension problem in the unit spheres of Lp(Γ) (p > 1) type spaces (in Chinese), Science in China, Ser. A, 2002, 32(11):991-995.
[9] Ding G. G., The representation theorem of onto isometric mapping between two unit sphere of L1(Γ)-type spaces and the application on isometric extension problem, Acta Math. Sinica, Engl. Ser., 2004, 20(6):1089-1094.
[10] Ding G. G., The representation of onto isometric mappings between two spheres of L∞-type spaces and the application on isometric extension problem, Science in China, Ser. A, 2004, 34(2):157-164(in Chinese); 2004, 47(5):722-729(in English).
[11] Ding G. G., The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space, Sci. China Ser. A, 2002, 45(4):479-483.
[12] Ding G. G., New Analysis of Functional Analysis, Science Press, Beijing, 2007.
[13] Fang X. N., Wang J. Y., Extension of isometries between unit spheres of normed space E and l1(Ω), Acta Math. Sinica Chin. Ser., 2008, 51(1):24-28.
[14] Fu X. H., Isometries on the space s, Acta Math. Sci. Ser. B, Engl. Ed., 2006, 26B:502-508.
[15] Gehér G. P., A contribution to the Aleksandrov conservative distance problem in two dimensions, Liacar Algebra Appl., 2015, 481:280-287.
[16] Li J. Z., Isometries on unit spheres of an F -space, Acta Sci. Nat. Univ. Nankai., 2012, 45:80-85.
[17] Liu R., On extension of ismetries between unit spheres of L∞(Γ)-type space and a Banach space E, J. Math. Anal. Appl., 2007, 333:959-970.
[18] Mankiewicz P., On extension of isoometries in normed linear spaces, Bull. Acad Polon Sci. Ser. Sci. Math. Astronom Phys., 1972, 20:367-371.
[19] Mazur S., Ulam S., Sur less transformationes isometriques d'espaces vectoriels noemes, Comptes Rendus Acad Sci. Paris, 1932, 194:946-948.
[20] Tingley D., Isometries of the unit spheres, Geometriae Dedicata, 1987, 22:371-387.
[21] Wang R. D., On linear Cxtension of isometries between the unit spheres of two-dimensional strictly convex normed space, Acta Math. Sinica Chin. Ser., 2008, 51(5):847-852.
[22] Yi J. J., Wang R. D., Wang X. X., Extension of isometries between the unit spheres of complex lp(Γ) (p > 1) spaces, Acta Math. Sci. Engl. Ed., 2014, 34B(5):1540-1550.
[23] Zhang L., On the isometric extension problem from the unit sphere S(L∞(2)) into S(L∞(3)), Acta Sci. Nat. Univ. Nankai., 2006, 39:110-112.
国家自然科学基金资助项目(11301384)
/
〈 |
|
〉 |