
δ-BiHom-Jordan-李超代数的表示
Representations of δ-BiHom-Jordan-Lie Superalgebras
本文研究δ-BiHom-Jordan-李超代数的表示.特别是详细地研究δ-BiHom-Jordan-李超代数的伴随表示、平凡表示、形变.作为应用,还讨论δ-BiHom-Jordan-李代数的导子.
The purpose of this article is to study representations of δ-BiHom-Jordan-Lie superalgebras. In particular, adjoint representations, trivial representations, deformations of δ-Bihom-Jordan-Lie superalgebras are studied in detail. Derivations of δ-BiHom-Jordan-Lie algebras are also discussed as an application.
&delta / -BiHom-Jordan-李超代数 / 表示 / 导子 / 形变 {{custom_keyword}} /
δ-BiHom-Jordan-Lie superalgebras / representations / derivations / deformations {{custom_keyword}} /
[1] Abdaoui K., Ben Hassine A., Makhlouf A., BiHom-Lie colour algebras structures, arxiv:1706.02188v1(2017).
[2] Aizawa N., Sato H., q-deformation of the Virasoro algebra with central extension, Phys. Lett. B, 1991, 256:185-190.
[3] Ammar F., Makhlouf A., Hom-Lie superalgerbas and Hom-Lie asmissible superalgebras, J. Algebra, 2010, 324:1513-1528.
[4] Ammar F., Makhlouf A., Saadaoui N., Cohomology of Hom-Lie superalgebras and q-deformed Witt superalgebra, Czech. Math. J., 2013, 63:721-761.
[5] Cao B., Guo L., Hom-Lie superalgebra structures on finite-dimensional simple Lie superalgebras, J. Lie Theory, 2013, 23:1115-1128.
[6] Chaichian M., Ellinas D., Popowicz Z., Quantum conformal algebra with central extension, Phys. Lett. B, 1990, 248:95-99.
[7] Cheng Y., Qi H., Representations of BiHom-Lie algebras, arXiv:1610.04302v1(2016).
[8] Graziani G., Makhlouf A., Menini C., et al., BiHom-associative algebras, BiHom-Lie algebras and BiHombialgebras, Symmetry Integrability and Geometry:Methods and Applications, 2015, 11:1-34.
[9] Guo S. J., Zhang X. H., Wang S. X., The construction and deformation of BiHom-Novikov algebras, J. Geom. Phys., 2018, 132:460-472.
[10] Hartwig J. T., Larsson D., Silvestrov S. D., Deformations of Lie algebras using σ-derivations, J. Algebra, 2006, 295:314-361.
[11] Hu N. H., q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebr. Colloq, 1999, 6:51-70.
[12] Ma L., Chen L. Y., Zhao J., δ-Hom-Jordan-Lie superalgebras, Comm. Algebra, 2018, 46:1668-1697.
[13] Li J., Chen L. Y., Cheng Y. S., Representation of BiHom-Lie superalgerbas, Linear Multilinear A., 2019, 67:299-326.
[14] Li J., Chen L. Y., Sun B., BiHom-Nijienhuis operators and T *-extensions of BiHom-Lie superalgebras, Hacettepe University Bulletin of Natural Sciences and Engineering Series B:Mathematics and Statistics, 2018, 48:1-19.
[15] Liu L., Makhlouf A., Menini C., et al., (σ, τ)-Rota-Baxter operators, infinitesimal Hom-bialgebras and the associative (Bi)Hom-Yang-Baxter equation, Can. Math. Bull., 2018, 61:1-18.
[16] Liu L., Makhlouf A., Menini C., Panaite F., BiHom-pre-Lie algebras, BiHom-Leibniz algebras and RotaBaxter operators on BiHom-Lie algebras, arxiv:1706.00474v1(2017).
[17] Okubo S., Kamiya N., Jordan Lie superalgebra and Jordan Lie triple system, J. Algebra, 1997, 198(2):388-411.
[18] Yuan J. X., Sun L. P., Liu W. D., Hom-Lie superalgebra structures on infinite-dimensional simple Lie superalgebras of vector fields, J. Geom. Phys., 2014, 84:1-7.
[19] Zhang J., Chen L. Y., Zhang C. P., On split regular BiHom-Lie superalgebras, J. Geom. Phys., 2018, 128:38-47.
国家自然科学基金资助项目(11761017);贵州省教育厅青年科技项目(黔教合KY字[2018]155)
/
〈 |
|
〉 |