Banach空间度量广义逆的乘积扰动

杜法鹏, 薛以锋

数学学报 ›› 2019, Vol. 62 ›› Issue (6) : 939-948.

PDF(446 KB)
PDF(446 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (6) : 939-948. DOI: 10.12386/A2019sxxb0084
论文

Banach空间度量广义逆的乘积扰动

    杜法鹏1, 薛以锋2
作者信息 +

Multiplicative Perturbations of Metric Generalized Inverse in Banach Space

    Fa Peng DU1, Yi Feng XUE2
Author information +
文章历史 +

摘要

X,Y为自反严格凸Banach空间.记ABX,Y)为具有闭值域RA)的有界线性算子,有界线性算子T=EAFBX,Y)为A的乘积扰动.本文研究了有界线性算子A的Moore-Penrose度量广义逆的乘积扰动.在值域RA)为α阶一致强唯一和零空间NA)为β阶一致强唯一的条件下.给出了||TM-AM||的上界估计,作为应用,我们在Lp空间上讨论了Moore-Penrose度量广义逆的乘积扰动.

Abstract

Suppose X, Y are reflexive strictly convex Banach spaces. Let AB(X, Y) be a bounded linear operator with R(A) closed. T=EAFB(X, Y) is a multiplicative perturbation of A. In this paper, we investigate the multiplicative perturbations of the metric generalized inverse of A. We present the upper bound of ||TM-AM under the condition that the range R(A) and the null space N(A) are uniformly strong unique of order α and order β, respectively. As an application, we consider the multiplicative perturbation of metric generalized inverse in Lp space.

关键词

乘积扰动 / Moore-Penrose度量广义逆 / 一致强唯一

Key words

multiplicative perturbation / metric generalized inverse / uniformly strong unique

引用本文

导出引用
杜法鹏, 薛以锋. Banach空间度量广义逆的乘积扰动. 数学学报, 2019, 62(6): 939-948 https://doi.org/10.12386/A2019sxxb0084
Fa Peng DU, Yi Feng XUE. Multiplicative Perturbations of Metric Generalized Inverse in Banach Space. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 939-948 https://doi.org/10.12386/A2019sxxb0084

参考文献

[1] Cai L., Xu W., Li W., Additive and multiplicative perturbation bounds for the Moore-Penrose inverse, Linear Algebra Appl., 2011, 434:480-489.
[2] Cao J., Xue Y., Perturbation analysis of the Moore-Penrose metric generalized inverse with applications, Banach J. Math. Anal., 2018, 3(12):709-729.
[3] Castro-González N., Ceballos J., Dopico F. M., et al., Accurate solution of structured least squares problems via rank-revealing decompositions, SIAM J. Matrix Anal. Appl., 2013, 34:1112-1128.
[4] Castro-González N., Ceballos J., Dopico F. M., et al., Multiplicative Perturbation Theory and Accurate Solution of Least Squares Problems, Technical report, http://gauss.uc3m.es/web/personalweb/fdopico/index sp.html, 2013.
[5] Castro-González N., Ceballos J., Dopico F. M., et al., Accurate solution of structured least squares problems via rank-revealing decompositions, SIAM J. Matrix Anal. Appl., 2013, 34:1112-1128.
[6] Castro-González N., Dopico F. M., Molera J. M., Multiplicative perturbation theory of the Moore-Penrose inverse and the least squares problem, Linear Algebra Appl., 2016, 503:1-25.
[7] Deutsch F., Linear selections for the metric projection, J. Funct. Anal., 1982, 49:269-292.
[8] Demmel J., Accurate singular value decompositions of structured matrices, SIAM J. Matrix Anal. Appl., 1999, 21:562-580.
[9] Dopico F. M., Koev P., Molera J. M., Implicit standard Jacobi gives high relative accuracy, Numer. Math., 2009, 113:519-553.
[10] Drma? Z., Veseli? K., New fast and accurate Jacobi SVD algorithm, I, SIAM J. Matrix Anal. Appl., 2008, 29:1322-342..
[11] Du F., Perturbation analysis for the Moore-Penrose metric generalized inverse of bounded linear operators, Banach J. Math. Anal., 2015, 4(9):100-114.
[12] Karmarkar N., A new polynomial-time algorithm for linear programming, Combinatorics, 1984, 4:373-395.
[13] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1984.
[14] Kró o A., Pinkus A., On stability of the metric projection operator, SIAM J. Math. Anal., 2003, 45(2):639-661.
[15] Li J., The metric projection and its applications to sloving variational inequalities in Banach spaces, Fixed Point Theory, 2004, 5(2):285-298.
[16] Meng L., Zheng B., Multiplicative perturbation bounds of the group invese and oblique projection, Filomat, 2016, 30(12):3171-3175.
[17] Müller V., Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Birkhäuser Verlag AG, 2nd Edn., 2007.
[18] Nashed M. Z., Generalized Inverse and Applications, Academic Press, New York, 1976.
[19] Nashed M. Z., Votruba G. F., A unified approach to generalized inverses of linear operators:II, Extremal and proximinal properties, Bull. Amer. Math. Soc., 1974, 80:831-835.
[20] Wang Y., Theory of Generalized Inverse of Operators on Banach Spaces and its Application (in Chinese), Science Press, Beijing, 2005.
[21] Wang H., Wang Y., Metric generalized inverse of linear operator in Banach spaces, Chin. Ann. Math., 2003, 24B(4):509-520.
[22] Xu Q., Song C., Wang G., Multiplicative perturbations of matrices and the generalized triple reverse order law for the Moore-Penrose inverse, Linear Algebra Appl., 2017, 530:366-383.
[23] Xue Y., Stable Perturbations of Operators and Related Topics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
[24] Zhang X., Fang X., Song C., et al., Representations and norm estimations for the Moore-Penrose inverse of multiplicative perturbations of matrices, Linear Multilinear Algebra, 2017, 65:555-571.

基金

国家自然科学基金资助项目(11531003);上海市科学技术委员会项目(18dz2271000)

PDF(446 KB)

473

Accesses

0

Citation

Detail

段落导航
相关文章

/