一类非线性高阶Kirchhoff型方程的初边值问题

叶耀军, 陶祥兴

数学学报 ›› 2019, Vol. 62 ›› Issue (6) : 923-938.

PDF(559 KB)
PDF(559 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (6) : 923-938. DOI: 10.12386/A2019sxxb0083
论文

一类非线性高阶Kirchhoff型方程的初边值问题

    叶耀军, 陶祥兴
作者信息 +

Initial Boundary Value Problem for Higher-order Nonlinear Kirchhoff-type Equation

    Yao Jun YE, Xiang Xing TAO
Author information +
文章历史 +

摘要

本文研究了一类具有非线性耗散项的高阶Kirchhoff型方程的初边值问题.通过构造稳定集讨论了此问题整体解的存在性,应用Nakao的差分不等式建立了解能量的衰减估计.在初始能量为正的条件下,证明了解在有限时间内发生blow-up,并且给出了解的生命区间估计.

Abstract

In this paper, the initial boundary value problem for some nonlinear higherorder Kirchhoff-type equation with damping and source terms in a bounded domain is studied. We prove the existence of global solutions for this problem by constructing a stable set and establish the energy decay estimate by applying a difference inequality due to Nakao. Meanwhile, under the condition of the positive initial energy, it is shown that the solution blows up in the finite time and the lifespan estimate of solution is also given.

关键词

非线性高阶Kirchhoff型方程 / 初边值问题 / 整体解 / 衰减估计 / 解的爆破

Key words

nonlinear higher-order Kirchhoff-type equation / initial-boundary value problem / global solution / decay estimate / blow-up

引用本文

导出引用
叶耀军, 陶祥兴. 一类非线性高阶Kirchhoff型方程的初边值问题. 数学学报, 2019, 62(6): 923-938 https://doi.org/10.12386/A2019sxxb0083
Yao Jun YE, Xiang Xing TAO. Initial Boundary Value Problem for Higher-order Nonlinear Kirchhoff-type Equation. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 923-938 https://doi.org/10.12386/A2019sxxb0083

参考文献

[1] Aliev A. B., Lichaei B. H., Existence and non-existence of global solutions of the Cauchy problem for higher order semilinear pseudo-hyperbolic equations, Nonlinear Anal. TMA, 2010, 72:3275-3288.
[2] Autuori G., Pucci P., Salvatori M. C., Asymptotic stability for nonlinear Kirchhoff systems, Nonlinear Anal. RWA, 2009, 10:889-909.
[3] Autuori G., Colasuonno F., Pucci P., Lifespan estimates for solutions of polyharmonic Kirchhoff systems, Math. Models Methods Appl. Sci., 2012, 22:1-36.
[4] Autuori G., Colasuonno F., Pucci P., Blow up at infinity of solutions of polyharmonic Kirchhoff systems, Complex Var. Elliptic Equ., Special Volume dedicated to Prof. R. Gilbert, 2012, 57:379-395.
[5] Autuori G., Pucci P., Salvatori M. C., Global Nonexistence for Nonlinear Kirchhoff Systems, Archive Rat. Mech. Anal., 2010, 196:489-516.
[6] Autuori G., Pucci P., Local asymptotic stability for polyharmonic Kirchhoff systems, Appl. Anal., Special Volume dedicated to Prof. P. L. Butzer, 2011, 90:493-514.
[7] Ball J. M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 1977, 28:473-486.
[8] Bernner P., Von Whal W., Global classical solutions of nonlinear wave equations, Math. Z., 1981, 176:87-121.
[9] Benaissa A., Messaoudi S. A., Blow-up of solutions for the Kirchhoff equation of q-Laplacian type with nonlinear dissipation, Colloquium Mathematicum, 2002, 94:103-109.
[10] Galaktionov V. A., Pohozaev S. I., Blow-up and critical exponents for nonlinear hyperbolic equations, Nonlinear Anal. TMA, 2003, 53:453-466.
[11] Gao Q., Li F., Wang Y., Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Cent. Eur. J. Math., 2011, 9:686-698.
[12] Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 1994, 109:295-308.
[13] Gorain G. C., Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation, Appl. Math. Comput., 2006, 177:235-242.
[14] Hosoya M., Yamada Y., On some nonlinear wave equations II:global existence and energy decay of solutions, J. Fac. Sci. Univ. Toyko Sect. IA Math., 1991, 38:239-250.
[15] Kirchhoff G., Vorlesungen über Mechanik, Teuber, Leipzig, 1883.
[16] Levine H. A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 1974, 5:138-146.
[17] Levine H. A., Serrin J., Global nonexistence theorems for quasilinear evolution equations wlth disspation, Arch. Rational Mech. Anal., 1997, 137:341-361.
[18] Levine H. A., Park S. R., Serrin J., Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinear damped wave equation, J. Math. Anal. Appl., 1998, 228:181-205.
[19] Li F. C., Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation, Appl. Math. Letters, 2004, 17:1409-1414.
[20] Miao C. X., The time space estimates and scattering at low energy for nonlinear higher order wave equations, Acta Mathematica Sinica, Series A, 1995, 38:708-717.
[21] Matsuyama T., Ikehata R., On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl., 1996, 204:729-753.
[22] Messaoudi S. A., Said Houari B., A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation, Appl. Math. Lett., 2007, 20:866-871.
[23] Nakao M., A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 1978, 30:747-762.
[24] Nishihara K., Yamada Y., On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcialaj Ekvacioj, 1990, 33:151-159.
[25] Ohta M., Blow-up of solutions of dissipative nonlinear wave equations, Hokkaido Math. J., 1997, 26:115-124.
[26] Ohta M., Remarks on blow-up of solutions for nonlinear evolution equations of second order, Adv. Math. Sci. Appl., 1998, 8:901-910.
[27] Ono K., On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 1997, 216:321-342.
[28] Ono K., On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type, Math. Meth. Appl. Sci, 1997, 20:151-177.
[29] Ono K., On global existence, decay and blow-up of solutions for some mildly degenerate Kirchhoff strings, J. Differential Equations, 1997, 137:273-301.
[30] Ono K., Blowing up and global existence of solutions for some degenerate nonlinear wave equations with some dissipation, Nonlinear Anal. TMA, 1997, 30:4449-4457.
[31] Payne L. E., Sattinger D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 1975, 22:273-303.
[32] Pata V., Zelik S., Smooth attractors for strongly damped wave equations, Nonlinearity, 2006, 19:1495-1506.
[33] Pecher H., Die existenz reguläer Lösungen für Cauchy-und anfangs-randwertproble-me michtlinear wellengleichungen, Math. Z., 1974, 140:263-279.
[34] Rammaha M. A., Sakuntasathien S., Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear Anal. TMA, 2010, 72:2658-2683.
[35] Sattinger D. H., On global solutions for nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 1968, 30:148-172.
[36] Strauss W. A., On continuity of functions with values in various Banach spaces, Pacific J. Math., 1966, 19:543-551.
[37] Vitillaro E., Global nonexistence theorems for a class of evolution equations with dissipation, Archive for Rational Mechanics and Analysis, 1999, 149:155-182.
[38] Wang B. X., Nonlinear scattering theory for a class of wave equations in Hs, J. Math. Anal. Appl., 2004, 296:74-96.
[39] Wu S. T., Tsai L. Y., Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with some dissipation, Nonlinear Anal. TMA., 2006, 65:243-264.
[40] Wu S. T., Tsai L. Y., Blow up of positive-initial-energy solutions for an integro-differential equation with nonlinear damping, Taiwanese J. Math., 2010, 14:2043-2058.
[41] Ye Y. J., Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation, Journal of Inequalities and Applications, 2010, 2010:1-14.
[42] Zeng R., Mu C. L., Zhou S. M., A blow-up result for Kirchhoff-type equations with high energy, Math. Methods Appl. Sci., 2011, 34:479-486.

基金

国家自然科学基金(61273016,11171306,11571306);浙江省自然科学基金(LY17A010009);浙江省科技厅公益性技术应用研究课题资助项目(2015C33088)

PDF(559 KB)

483

Accesses

0

Citation

Detail

段落导航
相关文章

/