
欧拉商的同余式及其应用(III)
A Congruence Involving the Quotients of Euler and Its Applications (Ⅲ)
在2002,2007的文章中,蔡天新等人介绍了一系列关于二项式系数模平方数的同余式.本文将这些同余式进行改进并推广到了模为立方数的情形,得到了许多新的同余式.如对任意正整数k和正奇数n,当e=2,3,4和6时,Πd|n(└d/e┘kd-1)μ(n/d)模n3的同余式,以及下面这类有趣的同余式
In the papers of 2002 and 2007, Cai et al. introduced a series of congruences involving binomial coefficients under perfect moduli. This article generalizes these congruences to cubic cases leading to many new statements. For example, the congruence Πd|n(└d/e┘kd-1)μ(n/d) module n3 for e=2, 3, 4 and 6, and the following congruence
二项式系数 / Morley同余式 / 欧拉商 {{custom_keyword}} /
binomial coefficient / Morley's congruence / Euler quotient {{custom_keyword}} /
[1] Al-Shaghay A., Dilcher K., Analogues of the binomial coefficient theorems of Gauss and Jacobi, Int. J. Number Theory, 2016, 12(8):2125-2145.
[2] Cai T., A congruence involving the quotients of Euler and its applications (I), Acta Arith., 2002, 103(4):313-320.
[3] Cai T., Fu X., Zhou X., A congruence involving the quotients of Euler and its applications (Ⅱ), Acta Arith., 2007, 130(3):203-214.
[4] Cao H. Q., Pan H., Note on some congruences of Lehmer, J. Number Theory, 2009, 129(8):1813-1819.
[5] Cosgrave J. B., Dilcher K., Sums of reciprocals modulo composite integers, J. Number Theory, 2013, 133(11):3565-3577.
[6] Cosgrave J. B., Dilcher K., On a congruence of Emma Lehmer related to Euler numbers, Acta Arith., 2013, 161(1):47-67.
[7] Eie M., Ong Y. L., A Generalization of Rummer's Congruences, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 67, No.1, Springer-Verlag, Hamburg, 1997.
[8] Granville A., Arithmetic Properties of Binomial Coeffcients, I. Binomial Coeffcients Modulo Prime Powers, Organic Mathematics, (Burnaby, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
[9] Kanemitsu S., Kuzumaki T., Urbanowicz J., On Congruences for the Sums Σi=1[n/r] χn(i)/ik of E. Lehmer's Type, IM PAN Preprint, No. 735, 2012.
[10] Kuzumaki T., Urbanowicz J., On Congruences for the Sums Σi=1[n/r] χn(i)/n-ri of E. Lehmer's Type, IM PAN Preprint, No. 736, 2012.
[11] Lehmer K., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math., 1938, 39(2):350-360.
[12] Morley F., Note on the congruence 24n≡(-1)n(2n)!/(n!)2, where 2n +1 is a prime, Ann. of Math., 1894/1895, 9:1-6; 168-170.
[13] Sun Z. W., General congruence for Bernoulli polynomials, Discrete Mathematics, 2003, 262(1-3):253-276.
[14] Tóth L., Sándor J., An asymptotic formula concerning a generalized Euler function, Fibonacci Quart., 1989, 27(2):176-180.
国家自然科学基金资助项目(11501052,11571303)
/
〈 |
|
〉 |