素变量混合幂丢番图逼近

李伟平, 戈文旭, 王天泽

数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 49-58.

PDF(443 KB)
PDF(443 KB)
数学学报 ›› 2019, Vol. 62 ›› Issue (1) : 49-58. DOI: 10.12386/A2019sxxb0005
论文

素变量混合幂丢番图逼近

    李伟平1, 戈文旭2, 王天泽2
作者信息 +

Diophantine Approximation with Prime Variables and Mixed Powers

    Wei Ping LI1, Wen Xu GE2, Tian Ze WANG2
Author information +
文章历史 +

摘要

λ1λ2λ3λ4为不全为负的非零实数,λ1/λ2是无理数和代数数.V是具有良好间隔的序列,δ>0.本文证明了:对于任意ε>0及vVvX,使得不等式|λ1p12+λ2p22+λ3p33+λ4p43-v|<v-δ无素数解p1p2p3p4v的个数不超过OX7/8+2δ+ε).这改进了之前的结果.

Abstract

Let λ1, λ2, λ3, λ4 be non-zero real numbers, not all negative, and let λ1/λ2 be irrational and algebraic. Let V be a well-spaced sequence and δ > 0. We prove that for any given ε > 0, the number of v satisfying vV and vX for which|λ1p12+λ2p22+λ3p33+λ4p43-v|<v-δ has no solution in primes p1, p2, p3, p4 does not exceed O(X7/8+2δ+ε). This gives an improvement of an earlier result.

关键词

丢番图不等式 / 素数 / Davenport-Heilbronn方法

Key words

diophantine inequalities / prime / Davenport-Heilbronn method

引用本文

导出引用
李伟平, 戈文旭, 王天泽. 素变量混合幂丢番图逼近. 数学学报, 2019, 62(1): 49-58 https://doi.org/10.12386/A2019sxxb0005
Wei Ping LI, Wen Xu GE, Tian Ze WANG. Diophantine Approximation with Prime Variables and Mixed Powers. Acta Mathematica Sinica, Chinese Series, 2019, 62(1): 49-58 https://doi.org/10.12386/A2019sxxb0005

参考文献

[1] Brüdern J., Cook R. J., Perelli A., The Values of Binary Linear Forms at Prime Arguments, Sieve Methods, Exponential Sums, and Their Applications in Number Theory, Cambridge Univ. Press, Cambridge, 1997:87-100.
[2] Cai Y. C., A remark on the values of binary linear forms at prime arguments, Arch Math., 2011, 97(5):431-441.
[3] Cook R. J., Fox A., The values of ternary quadratic forms at prime arguments, Mathematika, 2001, 48:137-149.
[4] Cook R. J., Harman G., The values of additive forms at prime arguments, Rocky MT. J. Math., 2006, 36:1153-1164.
[5] Davenport H., Analtic Methods for Diophantine Equations and Diophantine Inequalities, Second Edition, Cambridge University Press, Cambridge, 2005.
[6] Harman G., The values of ternary quadratic forms at prime arguments, Mathematika, 2004, 51:83-96.
[7] Harman G., Trigonometric sums over primes I, Mathematika, 1981, 28:249-254.
[8] Languasco A., Settimi V., On a diophantine problem with one prime, two squares of primes and s powers of two, Acta Arith., 2012, 154:385-412.
[9] Li W. P., Wang T. Z., Diophantine approximation with prime variables and mixed powers (in Chinese), Chinese Ann. Math. Ser. A, 2010, 31(2):247-256.
[10] Li W. P., Wang T. Z., The integral part of nonlinear form with k powers of primes, Acta Math. Sin., Chin. Ser., 2013, 56(4):605-612.
[11] Li W. P., Ge W. X., Wang T. Z., The Integer Part of Nonlinear Form with Mixed Powers 2, 3, 4, 5 and Prime Variables, Acta Mathematica Sinica, Chinese Series, 2016, 59(5):585-594.
[12] Languasco A., Zaccagnini A., On a ternary Diophantine problem with mixed powers of primes, Acta Arith., 2013, 159(4):345-362.
[13] Mu Q. W., Lü X. D., Diophantine approximation with prime variables and mixed powers (in Chinese), Chinese Ann. Math. Ser. A, 2015, 36(3):303-312.
[14] Mu Q. W., Lü X. D., Diophantine approximation with prime variables and mixed powers Ⅱ (in Chinese), Advances in Mathematics, 2017, 46(2):190-202.
[15] Rieger G. J., Über die Summe aus einem Quadrat und einem Primzahlquadrat, J. Reine Angew. Math., 1968, 231:89-100.
[16] Vaughan R. C., The Hardy-Littlewood Method, 2nd edn, Cambridge University Press, Cambridge, 1997.
[17] Wang Y. C., Values of binary linear forms at prime arguments, Front Math. China, 2015, 10(6):1449-1459.

基金

国家自然科学基金资助项目(11371122,11471112);河南省科技创新杰出人才计划(134200510017);河南财经政法大学2016年青年拔尖人才

PDF(443 KB)

314

Accesses

0

Citation

Detail

段落导航
相关文章

/