
扩张矩阵的广义二进方体的一些性质
Some Properties of General Dyadic Cubes Associated with an Expansive Matrix
本文给出了A进方体满足嵌套性质的一个充分条件,得到了A进方体的一个覆盖定理,探讨了A进方体与相关于扩张矩阵A的Christ-二进方体的关系.
We acquire a sufficient condition to guarantee the nesting property of the dilated cubes associated with an expansive matrix A. Second, we obtain a covering theorem about the dilated cubes. Finally, we discuss the relationship between the dilated cubes and Christ-dyadic cubes associated with an expansive matrix A.
各向异性 / 扩张矩阵 / 二进方体 {{custom_keyword}} /
anisotropy / expansive matrix / dyadic cube {{custom_keyword}} /
[1] Akbulut A., Guliyev V. S., Muradova Sh. A., Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces, Complex Var. Elliptic Equ., 2013, 58(2):259-280.
[2] Bownik M., Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 2003, 164:781.
[3] Bownik M., Anisotropic Triebel-Lizorkin spaces with doubling measures, J. Geom. Anal., 2007, 17(3):387-424.
[4] Bownik M., Ho K. P., Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces, Tran. Amer. Math. Soc., 2006, 358(4):1469-1510.
[5] Bownik M., Li B. D., Yang D. C., et al., Weighted anisotropic product Hardy spaces and boundedness of sublinear operators, Math. Nachr., 2010, 283(3):392-442.
[6] Christ M., A T (b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 1990, 60/61(2):383-390.
[7] Ding Y., Lan S. H., Fractional integral operators on anisotropic Hardy spaces, Integral Equations Operator Theory, 2008, 60(3):329-356.
[8] Li B. D., Fan X. Y., Yang D. C., Littlewood-Paley characterizations of anisotropic Hardy spaces of Musielak-Orlicz type, Taiwanese J. Math., 2015, 19(1):279-314.
[9] Liu J., Yang D. C., Yuan W., Anisotropic Hardy-Lorentz spaces and their applications, Sci. China Math., 2016, 59(9):1669-1720.
国家自然科学基金资助项目(11461065,11661075)
/
〈 |
|
〉 |