
一些差分—复合函数方程的亚纯解
On Meromorphic Solutions of Some Difference-Composite Functional Equations
利用Nevanlinna值分布理论,我们主要讨论了两类复差分—复合函数方程和一类复差分—复合函数方程组的超越亚纯解的存在性和特征估计,得到了几个结果.一些例子表明了定理中的条件是精确的.
In this paper, by applying Nevanlinna theory, we will mainly investigate the existence and characteristic estimates of transcendental solutions of two types of difference-composite functional equations and a class of system of difference-composite functional equations, and obtain some results. Some examples show that the condition in Theorems are precise.
估计 / 亚纯解 / 增长性 / 差分-复合函数方程 {{custom_keyword}} /
estimates / meromorphic solution / growth / difference-composite functional equations {{custom_keyword}} /
[1] Bergweiler W., Ishizaki K., Yanagihara N., Meromorphic solutions of some functional equations, Methods Appl. Anal., 1998, 5(3):248-258.
[2] Bergweiler W., Ishizaki K., Yanagihara N., Growth of meromorphic solutions of some functional equations I, Aequations Math., 2002, 63(1-2):140-151.
[3] Chen Z. X., Growth and zeros of meromorphic solution of some linear difference equations, Journal of Mathematical Analysis and Applications, 2011, 373:235-241.
[4] Chen Z. X., Shon K. H., On the growth of solutions of a class of higher order differential equation, Acta Mathematica Scientia, 2004, 24B(1):52-60.
[5] Chiang Y. M., Feng S. J., On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc., 2009, 361(7):3767-3791.
[6] Gao L. Y., The growth of solutions of systems of complex nonlinear algebraic differential equations, Acta Mathematica Scientia, 2010, 30B(3):932-938.
[7] Gao L. Y., On meromorphic solutions of a type of system of composite functional equations, Acta Mathematica Scientia, 2012, 32B(2):800-806.
[8] Gao L. Y., Systems of complex difference equations of Malmquist type, Acta Mathematica Sinica, Chinese Series, 2012, 40(1):293-300.
[9] Gao L. Y., The growth order of solutions of systems of complex difference equations, Acta Mathematica Scientia, 2013, 33B(3):814-820.
[10] Gao L. Y., On Meromorphic solutions to a type of difference equations, Chinese Annals of Mathematics, 2014, 35A(2):193-202; (Gao L. Y., On meromorphic solutions to a type of difference equations, Chinese Contemporary Math., 2014, 35(2):163-170).
[11] Goldstein R., Some results on factorisation of meromorphic functions, J. London Math. Soc., 1971, 4(2):357-364.
[12] Goldstein R., On meromorphic solutions of certain functional equations, Aequations Math., 1978, 18:112-157.
[13] Halburd R G., Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Mathematical Analysis and Applications, 2006, 314(2):477-487.
[14] Heittokangas J., Laine I., Rieppo J., et al., Meromorphic solutions of some linear functional equations, Aequations Math., 2000, 60:148-166.
[15] Korhonen R., A new Clunie type theorem for difference polynomials, J. Difference Equ. Appl., 2011, 17(3):387-400.
[16] Laine I., Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.
[17] Laine I., Rieppo J., Silvennoinen H., Remarks on complex difference equations, Computational Methods and Function Theory, 2005, 5(1):77-88.
[18] Mokhon'ko A. Z., Mokhon'ko V. D., Estimates for the Nevanlinna characteristics of some classes of meromorphic functions and their applications to differential equations, Siberian Math. J., 1974, 15:921-934.
[19] Silvennoinen H., Meromorphic Solutions of Some Composite Functional Equations, Ann. Acad. Sci. Fenn., Mathematica Dissertations, Helsinki, 2003, 133.
[20] Yi H. X., Yang C. C., Theory of the Uniqueness of Meromorphic Functions (in Chinese), Science Press, Beijing, 1995.
国家自然科学基金资助项目(10471065),广东省自然科学基金资助项目(04010474)
/
〈 |
|
〉 |