
广义山路引理的一些应用
Some Applications of Generalized Mountain Pass Lemma
具有(CPS)型条件的Ghoussoub—Preiss广义山路引理是经典的Ambrosetti—Rabinowitz山路引理的一个推广,本文将应用它来研究给定能量的具有对称性或非对称性势能的二阶哈密尔顿系统周期解的存在性.
The Ghoussoub-Preiss's generalized mountain-pass lemma with (CPS) type condition is a generalization of classical MPL of Ambrosetti-Rabinowitz. We apply it to study the existence of the periodic solutions with a given energy for some second order Hamiltonian systems with symmetrical and non-symmetrical potentials.
二阶哈密尔顿系统 / 周期解 / Ghoussoub-Preiss广义山路引理 / 闭子集上某水平的(CPS)条件 {{custom_keyword}} /
second order Hamiltonian systems / periodic solutions / Ghoussoub-Preiss's generalized mountain-pass lemma / (CPS) condition at some levels for a closed subset {{custom_keyword}} /
[1] Ambrosetti A., Coti Zelati V., Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal., Springer-Verlag, Berlin, 1990, 112:339-362.
[2] Ambrosetti A., Coti Zelati V., Closed orbits of fixed energy for a class of N-body problems, Ann. Inst. H. Poincar Analyse Non Lineaire, 1992, 9:187-200.
[3] Ambrosetti A., Rabinowitz P., Dual variational methods in critical point theory and applications, J. Func. Ana., 1973, 14:349-381.
[4] Benci V., Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. Henri Poincare Anal. NonLineaire, 1984, 1:401-412.
[5] Chang K. C., Infinite Dimensional Morse Theory and Mutiple Solution Problems, Birkhauser, 1993.
[6] Cerami G., Un criterio di esistenza per i punti critici so variete illimitate, Rend. Dell Academia Di Sc.Lombardo, 1978, 112:332-336.
[7] Ekeland I., Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990.
[8] Ghoussoub N., Preiss D., A general mountain pass principle for locating and clasifying critical points, Ann. Inst. Henri Poincar Anal. NonLineaire, 1984, 6:321-330.
[9] Gluck H., Ziller W., Existence of periodic motions of conservative systems, in:Seminar on minimal submanifolds, E. Bombieri ed., Princeton Univ. Press, Princeton, 1983.
[10] Van Groesen E., Analytical mini-max methods for Hamiltonian break orbits with a prescribed energy, JMAA, 1988, 132:1-12.
[11] Hayashi K., Periodic solutions of classical Hamiltonian systems, Tokyo J. Math., 1983, 2(6):473-486.
[12] Long Y., Index Theory for Symplectic Paths with Applications, Basel:Birkhauser, 2002.
[13] Mawhin J., Willem M., Critical Point Theory and Applications, Springer-Verlag, Berlin, 1989.
[14] Palais R., The principle of symmetric criticality, CMP, 1979, 69:19-30.
[15] Rabinowitz P. H., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 1978, 31:157-184.
[16] Rabinowitz P. H., Periodic solutions of a Hamiltonian systems on a prescribed energy surface, JDE, 1979, 33:336-352.
[17] Seifert H., Periodischer bewegungen mechanischer system, Math. Z., 1948, 51:197-216.
[18] Yosida K., Functional Analysis, Springer, Berlin, 1978.
[19] Yuan P. F., Zhang S. Q., New periodic solutions for a class of singular Hamiltonian systems, Acta Math. Sinica, New Series, 2013, 29:1205-1218.
[20] Ziemer W. P., Weakly Differentiable Functions, Springer-Verlag, New York, 1989.
国家自然科学基金资助项目(11671278,11701463)
/
〈 |
|
〉 |