竞争风险数据和协变量相依权重下可加可乘的子分布风险率模型

李婉星, 龙永红, 薛清水

数学学报 ›› 2018, Vol. 61 ›› Issue (3) : 353-374.

PDF(984 KB)
PDF(984 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (3) : 353-374. DOI: 10.12386/A2018sxxb0031
论文

竞争风险数据和协变量相依权重下可加可乘的子分布风险率模型

    李婉星1, 龙永红1, 薛清水2
作者信息 +

An Additive-Multiplicative Subdistribution Hazard Model with Covariates-Dependent Weight for Competing Risks Data

    Wan Xing LI1, Yong Hong LONG1, Qing Shui XUE2
Author information +
文章历史 +

摘要

本文在竞争风险数据下提出一种灵活的含变系数的可加可乘的子分布风险率模型.通过对删失时间的风险函数建立Cox比例风险模型,得到调整后的与协变量相依的权重,在新权重下建立估计方程来估计模型参数,并获得了估计的大样本性质,同时提出了模型中协变量的时变效应的检验方法.通过数值模拟验证了所提方法的有限样本性质,结果表明所提方法可以大大降低估计偏差.最后,分析了一组淋巴滤泡细胞的竞争风险数据集来展示所提方法的实际应用效果.

Abstract

We propose a flexible additive-multiplicative hazard model allowing the additive time-varying effects of covariate for the subdistribution in a competing risks circumstance. For inference on the model parameters, weighted estimating equation approaches under an covariates-dependent adjusted weight by fitting the Cox proportional hazard model for the censoring distribution are established. In addition, large number properties and a goodness-of-fit test procedure are presented. The finite sample behavior of the proposed estimators is evaluated through simulation studies, estimators from the proposed method perform satisfactorily on reduction of the bias, and an application to a competing risks data set from a follicular cell lymphoma study is illustrated.

关键词

竞争风险 / 变系数可加可乘风险率模型 / 累积发生函数 / 估计方程 / 逆删失概率加权

Key words

competing risks / time-varying additive-multiplicative hazard model / cumulative incidence function / estimating equation / inverse probability of censoring weight

引用本文

导出引用
李婉星, 龙永红, 薛清水. 竞争风险数据和协变量相依权重下可加可乘的子分布风险率模型. 数学学报, 2018, 61(3): 353-374 https://doi.org/10.12386/A2018sxxb0031
Wan Xing LI, Yong Hong LONG, Qing Shui XUE. An Additive-Multiplicative Subdistribution Hazard Model with Covariates-Dependent Weight for Competing Risks Data. Acta Mathematica Sinica, Chinese Series, 2018, 61(3): 353-374 https://doi.org/10.12386/A2018sxxb0031

参考文献

[1] Aalen O. O., A Model for Non-parametric Regression Analysis of Counting Process, Mathematical Statistics and Probability Theory (eds W. Klonecki, A. Kozek & J. Rosinski), Lecture Notes in Statistics, 2:1-25, Springer-Verlag, New York, 1980.
[2] Anderson P. K., Borgan Ø., Gill R. D. et al., Statistical Models Based on Counting Processes, Springer-Verlag, New York, 1993.
[3] Anderson P. K., Gill R. D., Cox's regression model for counting processes:a large sample study, Annals of Statistics, 1982, 10:1100-1120.
[4] Anderson P. K., Væth M., Simple parametric and nonparametric models for excess and relative mortality, Biometrics, 1989, 45:523-535.
[5] Cheng S. C., Fine J. P., Wei L. J., Prediction of cumulative incidence function under the proportional hazards model, Biometrics, 1998, 54:219-228.
[6] Cox D. R., Regression models and life tables (with discussion), J. Royal Statis. Soc. Ser. B, 1972, 34:187-220.
[7] Fine J. P., Gray R. J., A proportional hazards model for the subdistribution of a competing risk, J. Amer. Sta. Association, 1999, 94:496-509.
[8] Foutz R., On the unique consistent solution to the likelihood equations, J. Amer. Sta. Association, 1977, 72:147-149.
[9] He P., Frank E., Thomas H. S., et al., A proportional hazards regression model for the subdistribution with covariates-adjusted censoring weight for competing risks data, Scandinavian J. Statistics, 2016, 43:103-122.
[10] Kalbfleisch J. D., Prentice R. L., The Statistical Analysis of Failure Time Data, Wiley, New York, 2002.
[11] Lin D. Y., Fleming T., Wei L., Confidence bands for survival curves under the proportional hazards model, Biometrika, 1994, 81:73-81.
[12] Lin D. Y., Ying Z., Semiparametric analysis of the additive risk model, Biometrika, 1994, 81:61-71.
[13] Lin D. Y., Ying Z., Semiparametric analysis of general additive hazard models for counting processes, Annals of Statistics, 1995, 23:1712-1734.
[14] Lin D. Y., Wei L. J., Yang I., et al., Checking the Cox model with cumulative sums of martingale-based residuals, Biometrika, 1993, 80:557-572.
[15] Lin D. Y., Wei L. J., Yang I., et al., Semiparametric regression for the mean and rate function of recurrent events, Journal of the Royal Statistical Society Series B, 2000, 69:711-730.
[16] MacRae E. C. Matrix derivatives with an application to an adaptive linear decision problem. Annals of Statistics, 1974, 2:337-346.
[17] Martnussen T., Scheike T. H., A flexible additive multiplicative hazard model.Biometrika, 2002, 89:283-298.
[18] Martnussen T., Scheike T. H., Skovgaard I. M., Efficient estimation of fixed and time-varying covariate effects in multiplicative intensity models, Scandinavian Journal of Statistics, 2002, 29:57-74.
[19] Melania P., Competing Risks:A Practical Perspective, John Wiley & Sons, Chichester, 2006.
[20] Petersen P. M., Gospodarowicz M., Tsang R., et al., Long-term outcome in stage I and Ⅱ follicular lymphoma following treatment with involved field radiation therapy alone, Journal of Clinical Oncology, 2004b, 22, 563S.
[21] Prentice R. L., Kalbfleisch J. D., Peterson A. V., et al., The analysis of failure time data in the presence of competing risks, Biometrics, 1978, 34:541-554.
[22] Robins J. M., Rotnitzky A., Recovery of Information and Adjustment for Dependent Censoring Using Surrogate Markers, in ADIS Epidemiology-Methodological Issues, 1992, eds. N. Jewell, K. Dietz, and V. Farewell, Boston:Birkhauser, pp. 24-33.
[23] Scheike T. H., Zhang M. J., An additive-multiplicative Cox-Aalen regression model, Scandinavian Journal of Statistics, 2002, 29:75-88.
[24] Scheike T. H., Zhang M. J., Flexible competing risks regression modeling and goodness-of-fit, Lifetime Data Analysis, 2008, 14:464-483.
[25] Shen Y., Cheng S. C., Confidence bands for cumulative incidence curves under the additive risk model, Biometrics, 1999, 55:1093-1100.
[26] Sun L. Q., Liu J. X., Sun J. G. et al., Modeling the subdistribution of a competing risk, Statistica Sinica, 2006, 16:1367-1385.

PDF(984 KB)

646

Accesses

0

Citation

Detail

段落导航
相关文章

/