
一类粗糙核奇异积分算子的端点估计
Endpoint Estimates of a Class of Singular Integral Operators with Rough Kernels
设TΩ是带粗糙核的Calderón-Zygmund奇异积分算子,I为任意真包含在单位圆周S1上的闭圆弧.本文证明,若Ω支在I上并在I上单调,那么TΩ是从Hardy空间H1(R2)到L1(R2)的有界算子当且仅当||Ω||Llog L(S1) < ∞.
Assume TΩ is the Calderón-Zygmund singular integral operator with rough kernel and I is the closed arc of unit circle that I ? S1. In this paper, we prove that if Ω is supported in I and monotonous on I, then TΩ is bounded from Hardy space H1(R2) to L1(R2) if and only if||Ω||L log L < ∞.
端点估计 / 奇异积分算子 / 粗糙核 / Hardy空间 {{custom_keyword}} /
endpoint estimate / singular integral operators / rough kernel / Hardy space {{custom_keyword}} /
[1] Bownik M., Seeger A., Boundedness of operators on Hardy spaces via atomic decompositions, Proceedings of the American Mathematical Society, 2005, 133:3535-3542.
[2] Calderón A. P., Zygmund A., On singular integrals, Amer. J. Math., 1956, 78:289-309.
[3] Chen J., Zhu X., A note on weak type L1 boundness of CZOs with rough kernels, J. Math. Anal. Appl., 2008, 339:438-453.
[4] Christ M., Weak type (1, 1) bounds for rough kernels, Ann. Math., 1988, 128:19-42.
[5] Christ M., Rubio de Francia J. L., Weak type (1, 1) bounds for rough operators Ⅱ, Invent. Math., 1988, 93:229-237.
[6] Coifman R. R., Weiss G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 1997, 83:569-645.
[7] Connett W. C., Singular integrals near L1, Proc. Sympos. Pure Math. Amer. Math. Soc. (S. Wainger and G. Weiss, eds.), 1979:163-169.
[8] Grafakos L., Classical Fourier Analysis, Springer, New York, 2004.
[9] Grafakos L., Endpoint bounded for an analytic family of Hilbert transforms, Duke Math., 1991, 62:23-59.
[10] Grafakos L., Modern Fourier Analysis, Springer, New York, 2004.
[11] Grafakos L., Stefanov A., Convolution Calderón-Zygmund singular integral operators with rough kernels, Analysis of Divergence Applied and Numerical Harmonic Analysis, 1999:119-143.
[12] Hofmann S., Weak (1, 1) boundedness of singular integrals with nonsmooth kernels, Proc. Amer. Math. Soc., 1988, 103:260-264.
[13] Ricci F., Weiss G., A characterization of H1(Σn-1), in:S. Wainger, G. Weiss (Eds.), Proc. Sympos. Pure Math. Amer. Math. Soc., 1979:289-294.
[14] Seeger A., Singular integral operator with rough convolution kernels, J. Amer. Math. Soc., 1996, 9:99-109.
[15] Seeger A., Tao T., Sharp Lorentz space estimates for rough operators, Math. Ann., 2001, 320:381-415.
[16] Stefanov A., Weak type estimates for certain Calderón-Zygmund singular integral operators, Studia Math., 2001, 147(1):1-13.
[17] Stein E. M., Singular Integral and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
[18] Tao T., The weak-type (1, 1) of L log L homogeneous convolution operators, Indiana Univ. Math., 1999, 48:1547-1584.
/
〈 |
|
〉 |