逐段单调函数的高度与拓扑共轭

张萍萍, 李伟年

数学学报 ›› 2018, Vol. 61 ›› Issue (2) : 243-260.

PDF(651 KB)
PDF(651 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (2) : 243-260. DOI: 10.12386/A2018sxxb0021
论文

逐段单调函数的高度与拓扑共轭

    张萍萍, 李伟年
作者信息 +

Height and Topological Conjugacy of Piecewise Monotonic Functions

    Ping Ping ZHANG, Wei Nian LI
Author information +
文章历史 +

摘要

迭代运算下,函数值可以交叉于不同的子区间,使得逐段单调函数的高度异常复杂.本文考虑一个非单调点的连续函数类.首先给出高度的充分必要条件,以此获得此类函数的一种划分.其次针对函数类的一个非空子集,给出判定拓扑共轭的充分必要条件和构造拓扑共轭的新方法.进一步地,我们阐明这样的事实:两个逐段单调函数拓扑共轭是其高度相等的充分不必要条件,最后举例说明.

Abstract

Computing height of piecewise monotonic functions is difficult because the value of functions may interact each other under iteration. In this paper we consider the set of continuous functions with a single non-monotonic point. We first present a sufficient and necessary condition for heights which gives a classification of those functions. Then we provide an equivalent condition and a new construction method for topological conjugacy for a nonempty subset of the mentioned continuous functions. Furthermore, we prove that topological conjugacy is a sufficient but not necessary condition for equal heights of piecewise monotonic functions. Finally, some examples are given to illustrate our results.

关键词

迭代 / 逐段单调函数 / 高度 / 拓扑共轭

Key words

iteration / piecewise monotonic function / height / topological conjugacy

引用本文

导出引用
张萍萍, 李伟年. 逐段单调函数的高度与拓扑共轭. 数学学报, 2018, 61(2): 243-260 https://doi.org/10.12386/A2018sxxb0021
Ping Ping ZHANG, Wei Nian LI. Height and Topological Conjugacy of Piecewise Monotonic Functions. Acta Mathematica Sinica, Chinese Series, 2018, 61(2): 243-260 https://doi.org/10.12386/A2018sxxb0021

参考文献

[1] Baldwin S., A complete classification of the piecewise monotone functions on the interval, Trans. Amer. Math. Soc., 1990, 319(1):155-178.
[2] Block L., Coven E. M., Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval, Trans. Amer. Math. Soc., 1987, 300(1):297-306.
[3] Block L., Keesling J., Ledis D., Semi-conjugacies and inverse limit spaces, J. Difference Equ. Appl., 2012, 18(4):627-645.
[4] Cieplinski K., Zdun M. C., On uniqueness of conjugacy of continuous and piecewise monotone functions, Fixed Point Th. Appl., 2009, doi:10.1155/2009/230414.
[5] De Melo W., Van Strien S., One-Dimensional Dynamics, Springer-Verlag, Berlin, 1993.
[6] Jiang Y., Smooth classification of geometrically finite one-dimensional maps, Trans. Amer. Math. Soc., 1996, 348:2391-2412.
[7] Katok A., Hasselblatt B., Introduction to the Modern Theory of Dynamics Systems, Cambridge University Press, UK, 1995.
[8] Kuczma M., On the functional eqation φn(x)=g(x), Ann. Polon. Math., 1961, 11:161-175.
[9] Lésniak Z., Shi Y., Topological conjugacy of piecewise monotonic functions of nonmonotonicity height ≥ 1, J. Math. Anal. Appl., 2015, 423:1792-1803.
[10] Li L., A topological classification for piecewise monotone iterative roots, Aequat. Math., 2017, 91:137-152.
[11] Li L., Chen J., Iterative roots of piecewise monotonic functions with finite nonmonotonicity height, J. Math. Anal. Appl., 2014, 411:395-404.
[12] Li L., Zhang W., Conjugacy between piecewise monotonic functions and their iterative roots, Science China Mathematics, 2016, 59(2):367-378.
[13] Li S., Shen W., Smooth conjugacy between S-unimodal maps, Nonlinearity, 2006, 19:1629-1634.
[14] Liu L., Jarczyk W., Li L., et al., Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than 2, Nonlinear Analysis, 2012, 75:286-303.
[15] Liu L., Zhang W., Non-monotonic iterative roots extended from characteristic intervals, J. Math. Anal. Appl., 2011, 378:359-373.
[16] Milnor J., Thurston W., On iterated maps of the interval, Dynamical Systems (College Park, MD, 1986/1987), Lecture Notes in Math., vol. 1342, Springer, Berlin, New York, 1988:465-563.
[17] Nowicki T., Przytycki F., The conjugacy of Collet-Eckmann's map of the interval with the tent map is Holder contionuous, Ergod. Th. & Dynam. Sys., 1989, 9:379-388.
[18] Parry W., Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 1966, 122:368-378.
[19] Pierre Collet J. P. E., Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston, Basel, Berlin, 2009.
[20] Segawa H., Ishitani H., On the existence of a conjugacy between weakly multimodal maps, Tokyo J. Math., 1998, 21(2):511-521.
[21] Shi Y., Li L., Lésniak Z., On conjugacy of r-modal interval maps with nonmonotonicity height equal to 1, J. Difference Equ. Appl., 2013, 19:573-584.
[22] Zhang J., Yang L., Discussion on iterative roots of piecewise monotone functions (in Chinese), Acta Math. Sinica, 1983, 26:398-412.
[23] Zhang J., Yang L., Zhang W., Some advances on functional equations, Adv. Math. China., 1995, 26:385-405.
[24] Zhang W., PM functions, their characteristic intervals and iterative roots, Ann. Polon. Math., 1997, 65:119-128.

基金

山东省自然科学基金资助项目(ZR2017MA019)

PDF(651 KB)

459

Accesses

0

Citation

Detail

段落导航
相关文章

/