带多项式相位的高维振荡积分算子的有界性

魏明权, 燕敦验

数学学报 ›› 2018, Vol. 61 ›› Issue (1) : 89-96.

PDF(464 KB)
PDF(464 KB)
数学学报 ›› 2018, Vol. 61 ›› Issue (1) : 89-96. DOI: 10.12386/A2018sxxb0009
论文

带多项式相位的高维振荡积分算子的有界性

    魏明权1, 燕敦验2
作者信息 +

The Boundedness for an Oscillatory Integral Operator on Multi-dimension with Polynomial Phase

    Ming Quan WEI1, Dun Yan YAN2
Author information +
文章历史 +

摘要

考虑如下的振荡积分算子:

中函数f为定义在Rn上的Schwartz函数,并且满足mk>0.本文给出算子TmknLp(Rn)(1 ≤ p < ∞)到Lq(Rn)有界的一个充分必要条件.此外,我们还证明了算子TmknL1(Rn)映到l0(Rn).

Abstract

We consider the following oscillatory integral operator:

where the function f is assumed to be a Schwartz function on Rn and m, k > 0. In this paper, we characterize the sufficient and necessary conditions which ensure the boundedness for Tm,k,n from Lp(Rn) (1 ≤ p < ∞) to Lq(Rn). In addition, the operator Tm,k,n also maps L1(Rn) into l0(Rn).

关键词

振荡积分算子 / 有界性 / Lp(Rn)

Key words

oscillatory integral operator / boundedness / Lp(Rn)

引用本文

导出引用
魏明权, 燕敦验. 带多项式相位的高维振荡积分算子的有界性. 数学学报, 2018, 61(1): 89-96 https://doi.org/10.12386/A2018sxxb0009
Ming Quan WEI, Dun Yan YAN. The Boundedness for an Oscillatory Integral Operator on Multi-dimension with Polynomial Phase. Acta Mathematica Sinica, Chinese Series, 2018, 61(1): 89-96 https://doi.org/10.12386/A2018sxxb0009

参考文献

[1] Cheng L. C., Pan Y. B., Lp estimates for oscillatory integral operators, Proc. Amer. Math. Soc., 1999, 127:2995-3002.
[2] Grafakos L., Classical and Modern Fourier Analysis, China Machine Press, Beijing, 2005.
[3] Lv P., Shi Z. S. H., Yan D., Some remarks on the Fourier transform, Pan-Amer. Math. J., 2013, 23:99-112.
[4] Pan Y. B., Uniform estimates for oscillatory integral operators, J. Funct. Anal., 1991, 100:207-220.
[5] Pan Y. B., Sampson G., Szeptycki P., L2 and Lp estimates for oscillatory integrals and their extended domains, Stud. Math., 1997, 122:201-225.
[6] Phone D. H., Stein E. M., Hilbert integrals, singular integrals, and Randon transform I, Acta Math., 1986, 157:99-157.
[7] Phone D. H., Stein E. M., Models of degenerate Fourier integral operators and Radon transforms, Ann. Math., 1994, 140:703-722.
[8] Rudin W., Real and Complex Analysis, 3rd Ed., McGraw-Hill, Singapore, 1987.
[9] Sampson G., Estimates of oscillatory integrals, Rend. Circ. Mat. Palermo, 2001, 57:141-148.
[10] Sampson G., Lp estimates for a class of oscillatory integrals, Proc. Amer. Math. Soc., 2003, 131:2727-2732.
[11] Sampson G., Szeptycki P., The complete (Lp, Lp) mapping properities of some oscillatory integrals in several dimensions, Canad. J. Math., 2001, 53:1031-1056.

基金

国家自然科学基金(11471309,11561062);2018年河南省高等学校重点科研项目(18A110028)信阳师范学院"南湖学者奖励计划"青年项目;信阳师范学院博士科研启动项目(16030)

PDF(464 KB)

389

Accesses

0

Citation

Detail

段落导航
相关文章

/