
非谱自仿测度下正交指数函数系的基数
The Cardinality of Orthogonal Exponentials Under the Non-spectral Self-affine Measures
设是μM,D由扩张矩阵M ∈ Mn(Z)和有限数字集D ⊂ Zn通过仿射迭代函数系统{φd(x)=M-1(x+d)}d∈D唯一确定的自仿测度,它的非谱性与相应的平方可积函数构成的Hilbert空间L2(μM,D)中正交指数函数系的有限性或无限性密切相关.通过对数字集D的符号函数mD(x)的零点集合Z(mD)的特征分析以及其中非零中间点(即坐标为0或1/2的点)和非中间点的性质应用,得到了非谱自仿测度下正交指数函数系基数的一个更为精确的估计,改进推广了Dutkay,Jorgensen等人的相关结果.
Let μM,D be the self-affine measure uniquely determined by an expanding matrix M ∈ Mn(Z) and a finite digit set D ⊂ Zn through the affine iterated function system (IFS){φd(x)=M-1(x+d)}d∈D. The non-spectrality of μM,D is directly connected with the finiteness or infiniteness of orthogonal exponentials in the Hilbert space L2(μM,D). We provide a better estimate on the cardinality of μM,D-orthogonal exponentials by characterizing the zero set Z(mD) of the symbol function mD(x) and its middle points. The results here extend the corresponding results of Dutkay, Jorgensen and others.
自仿测度 / 正交指数函数系 / 非谱性 / 数字集 {{custom_keyword}} /
self-affine measures / orthogonal exponentials / non-spectrality / digit set {{custom_keyword}} /
[1] Dutkay D. E., Jorgensen P. E. T., Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z, 2007, 256:801-823.
[2] Hutchinson J. E., Fractals and self-similarity, India Univ. Math. J., 1981, 30:713-747.
[3] Jorgensen P. E. T., Pedersen S., Dense analytic subspaces in fractal L2-spaces, J. Anal. Math., 1998, 75:185-228.
[4] Jorgensen P. E. T., Pedersen S., Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl., 1999, 5:285-302.
[5] Li J. L., Orthogonal exponentials on the generalized plane Sierpinski gasket, J. Approx. Theory, 2008, 153:161-169.
[6] Li J. L., Non-spectral problem for a class of planar self-affine measures, J. Funct. Anal., 2008, 255:3125-3148.
[7] Li J. L., Non-spectrality of planar self-affine measures with three-element digit set, J. Funct. Anal., 2009, 257:537-552.
[8] Li J. L., On the μM,D-orthogonal exponentials, Nonlinear Anal., 2010, 73(4):940-951.
[9] Li J. L., Analysis of μM,D-orthogonal exponentials for the planar four-element digit sets, Math. Nachr., 2014, 287:297-312.
[10] Li J. L., A necessary and sufficient condition for the finite μM,D-orthogonality, Sci. China Math., 2015, 58(12):2541-2548.
[11] Li J. L., Non-spectral criterions for self-affine measures, Acta Mathematica Sinic, Chinese Series, 2017, 60(3):361-368.
[12] Li N., Li J. L., A sufficient condition for the finite μM,D-orthogonal exponentials (in Chinese), Chinese Annals Math., Ser. A., to appear.
国家自然科学基金资助项目(11571214);中央高校基本科研业务费专项基金(GK201601004)
/
〈 |
|
〉 |