非谱自仿测度下正交指数函数系的基数

刘岩, 李建林, 王琦

数学学报 ›› 2017, Vol. 60 ›› Issue (6) : 1003-1012.

PDF(556 KB)
PDF(556 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (6) : 1003-1012. DOI: 10.12386/A2017sxxb0087
论文

非谱自仿测度下正交指数函数系的基数

    刘岩, 李建林, 王琦
作者信息 +

The Cardinality of Orthogonal Exponentials Under the Non-spectral Self-affine Measures

    Yan LIU, Jian Lin LI, Qi WANG
Author information +
文章历史 +

摘要

设是μM,D由扩张矩阵MMn(Z)和有限数字集D ⊂ Zn通过仿射迭代函数系统{φdx)=M-1x+d)}dD唯一确定的自仿测度,它的非谱性与相应的平方可积函数构成的Hilbert空间L2μM,D)中正交指数函数系的有限性或无限性密切相关.通过对数字集D的符号函数mDx)的零点集合ZmD)的特征分析以及其中非零中间点(即坐标为0或1/2的点)和非中间点的性质应用,得到了非谱自仿测度下正交指数函数系基数的一个更为精确的估计,改进推广了Dutkay,Jorgensen等人的相关结果.

Abstract

Let μM,D be the self-affine measure uniquely determined by an expanding matrix MMn(Z) and a finite digit set D ⊂ Zn through the affine iterated function system (IFS){φd(x)=M-1(x+d)}dD. The non-spectrality of μM,D is directly connected with the finiteness or infiniteness of orthogonal exponentials in the Hilbert space L2(μM,D). We provide a better estimate on the cardinality of μM,D-orthogonal exponentials by characterizing the zero set Z(mD) of the symbol function mD(x) and its middle points. The results here extend the corresponding results of Dutkay, Jorgensen and others.

关键词

自仿测度 / 正交指数函数系 / 非谱性 / 数字集

Key words

self-affine measures / orthogonal exponentials / non-spectrality / digit set

引用本文

导出引用
刘岩, 李建林, 王琦. 非谱自仿测度下正交指数函数系的基数. 数学学报, 2017, 60(6): 1003-1012 https://doi.org/10.12386/A2017sxxb0087
Yan LIU, Jian Lin LI, Qi WANG. The Cardinality of Orthogonal Exponentials Under the Non-spectral Self-affine Measures. Acta Mathematica Sinica, Chinese Series, 2017, 60(6): 1003-1012 https://doi.org/10.12386/A2017sxxb0087

参考文献

[1] Dutkay D. E., Jorgensen P. E. T., Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z, 2007, 256:801-823.
[2] Hutchinson J. E., Fractals and self-similarity, India Univ. Math. J., 1981, 30:713-747.
[3] Jorgensen P. E. T., Pedersen S., Dense analytic subspaces in fractal L2-spaces, J. Anal. Math., 1998, 75:185-228.
[4] Jorgensen P. E. T., Pedersen S., Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl., 1999, 5:285-302.
[5] Li J. L., Orthogonal exponentials on the generalized plane Sierpinski gasket, J. Approx. Theory, 2008, 153:161-169.
[6] Li J. L., Non-spectral problem for a class of planar self-affine measures, J. Funct. Anal., 2008, 255:3125-3148.
[7] Li J. L., Non-spectrality of planar self-affine measures with three-element digit set, J. Funct. Anal., 2009, 257:537-552.
[8] Li J. L., On the μM,D-orthogonal exponentials, Nonlinear Anal., 2010, 73(4):940-951.
[9] Li J. L., Analysis of μM,D-orthogonal exponentials for the planar four-element digit sets, Math. Nachr., 2014, 287:297-312.
[10] Li J. L., A necessary and sufficient condition for the finite μM,D-orthogonality, Sci. China Math., 2015, 58(12):2541-2548.
[11] Li J. L., Non-spectral criterions for self-affine measures, Acta Mathematica Sinic, Chinese Series, 2017, 60(3):361-368.
[12] Li N., Li J. L., A sufficient condition for the finite μM,D-orthogonal exponentials (in Chinese), Chinese Annals Math., Ser. A., to appear.

基金

国家自然科学基金资助项目(11571214);中央高校基本科研业务费专项基金(GK201601004)

PDF(556 KB)

304

Accesses

0

Citation

Detail

段落导航
相关文章

/