带逆平方势的非线性Schrödinger方程的有限时间性态

夏滨

数学学报 ›› 2017, Vol. 60 ›› Issue (5) : 799-814.

PDF(561 KB)
PDF(561 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (5) : 799-814. DOI: 10.12386/A2017sxxb0068
论文

带逆平方势的非线性Schrödinger方程的有限时间性态

    夏滨
作者信息 +

Finite Time Behaviour of Nonlinear Schrödinger Equation with Inverse Square Potential

    Bin XIA
Author information +
文章历史 +

摘要

在关于非相对论分子物理中磁性粒子捕获电子的研究中,带逆平方势的非线性Schrödinger方程 起着重要的作用.我们重点关注该系统有限时间内的存在性和性态,并导出了该系统解爆破的一个显示精确门槛标准. 进一步,证明了该系统径对称爆破解的集中性.

Abstract

Nonlinear Schrödinger equation with an inverse square potential plays a very important role in the study of electron capture by polar molecules in nonrelativistic molecular physics. We especially focus on the existence and the qualitative behavior of the finite time solution for this system. We first establish an explicit and exact threshold criterion of the blowup solutions, then show the concentration of the radially symmetric blowup solutions.

关键词

非线性Schrö / dinger方程 / 逆平方势 / 爆破 / 门槛标准 / 集中

Key words

nonlinear Schrödinger equation / inverse square potential / blowup / threshold criterion / concentration

引用本文

导出引用
夏滨. 带逆平方势的非线性Schrödinger方程的有限时间性态. 数学学报, 2017, 60(5): 799-814 https://doi.org/10.12386/A2017sxxb0068
Bin XIA. Finite Time Behaviour of Nonlinear Schrödinger Equation with Inverse Square Potential. Acta Mathematica Sinica, Chinese Series, 2017, 60(5): 799-814 https://doi.org/10.12386/A2017sxxb0068

参考文献

[1] Abdellaoui B., Felli V., Peral I., Existence and multiplicity for perturbations of an equation involving Hardy inequality and critical Sobolev exponent in the whole in RD, Adv. Diff. Equ., 2004, 9: 481-508.
[2] Azorero J. G., Peral I., Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Equ., 1998, 144: 441-476.
[3] Bégout P., Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation, Adv. Math. Sci. Appl., 2002, 12: 817-827.
[4] Burq N., Planchon F., Stalker J. G., et al., Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anat., 2003, 203: 519-549.
[5] Burq N., Planchon F., Stalker J. G., et al., Strichartz estimates for the Wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J., 2004, 53: 1667-1682.
[6] Cao D., Han P., Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Diff. Equ., 2004, 205: 521-537.
[7] Cazenave T., Semilinear Schrödinger Equations, Courant Lecture Notes, 10, American Mathematical Society, Providence, R.I., 2003.
[8] Chen G., Zhang J., Wei Y., Energy criterion of global existence for supercritical nonlinear Schrödinger equation with harmonic potential, J. Math. Physics, 2007, 48, 073513.
[9] Chen J., Existence of solutions for a nonlinear PDE with an inverse square potential, J. Diff. Equ., 2003, 195: 497-519.
[10] Felli V., Terracaini S., Nonlinear Schrödinger equations with symmetric multi-polar potentials, Cal. Var. Partial Diff. Equ., 2006, 27: 25-58.
[11] Felli V., Terracaini S., Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity, C. Partial Diff. Equ., 2006, 31: 469-495.
[12] Felli V., Marchini E. M., Terracini S., On Schrödinger operators with multipolar inverse-square potentials, J. Func. Anal., 2007, 250: 265-316.
[13] Felli V., Marchini E. M., Terracini S., On the behavior of solutions to Schrödinger equations with dipole-type potentials near the singularity, Discrete Contin. Dynam. Systems, 2008, 21: 91-119.
[14] Felli V., Marchini E. M., Terracini S., On Schrödinger operators with multisingular inverse-square anisotropic potentials, Indiana Univ. Math. J., 2009, 58: 617-676.
[15] Frank W. M., Land D. J., Spector R. M., Singular potentials, Rev. Modern Phys., 1971, 43: 36-98.
[16] Glassey R. T., On the blowup of nonlinear Schrödinger equations, J. Math. Phys., 1977, 18: 1794-1797.
[17] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, reprint of the 1952 edition, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1988.
[18] Holmer J., Roudenko S., On blowup solutions to the 3D cubic nonlinear Schrödinger equation, Appl. Math. Res. Express, 2007, 2007: Article ID 004, 29 pages doi:10.1093/amrx/abm004.
[19] Killip R., Miao C., Visan M., et al., Sobolev spaces adapted to the Schrödinger operator with inverse-square potential, Preprint arXiv: 1503.02716v2.
[20] Killip R., Miao C., Visan M., et al., The energy-critical NLS with inverse-square potential, Preprint arXiv: 1509.05822.
[21] Killip R., Murphy J., Visan M., et al., The focusing cubic NLS with inverse-square potential in tree sapce dimensions, arXiv: 1603.08912v1.
[22] Kuznetsov E. A., Rasmussen J. J., Rypdal K., et al., Sharper criteria for the wave collapse, Physica D, 1995, 87: 273-284.
[23] Kwong M. K., Uniqueness of positive solutions of Δu-u+up=0 in RN, Arch. Rat. Mech. Anal., 1989, 105: 243-266.
[24] Landau L. D., Lifshitz E. M., Quantum Mechanics, Pergamon Press Ltd., London, Paris, 1965.
[25] Levine H. A., Instability and nonexistence of global solution to nonlinear wave equations of the form Putt=-Au-F(u), Trans. AMS, 1974, 92: 1-21.
[26] Lévy-Leblond J. M., Electron capture by polar molecules, Phys. Rev., 1967, 153: 1-4.
[27] Ozawa T., Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Diff. Equ., 2006, 25: 403-408.
[28] Planchon F., Stalker J. G., Tahvildar-Zadehd A. S., Lp estimates for the wave equation with the inversesquare potential, Discrete Contin. Dynam. Systems, 2003, 9: 427-442.
[29] Strauss W. A., Tsutaya K., Existence and blow up of small amplitude nonlinear wave with a negative potential, Discrete Contin. Dynam. Sys., 1997, 3: 175-188.
[30] Smets D., Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. AMS, 2005, 357: 2909-2938.
[31] Strauss W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 1977, 55: 149-162.
[32] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
[33] Weinstein M. I., Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 1983, 87: 567-576.
[34] Zhang J., Sharp threshold for global existence and blowup in nonlinear Schrödinger equation with harmonic potential, C. Partial Diff. Equ., 2005, 30: 1429-1443.

基金

四川省教育厅重点科研项目(15ZA0031)

PDF(561 KB)

250

Accesses

0

Citation

Detail

段落导航
相关文章

/