M/T-SPH/1排队平稳指标分布的尾部衰减特征

张宏波, 史定华

数学学报 ›› 2017, Vol. 60 ›› Issue (5) : 713-720.

PDF(508 KB)
PDF(508 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (5) : 713-720. DOI: 10.12386/A2017sxxb0060
论文

M/T-SPH/1排队平稳指标分布的尾部衰减特征

    张宏波1, 史定华2
作者信息 +

Tail Asymptotics for Stationary Indices Distribution of M/T-SPH/1 Queue

    Hong Bo ZHANG1, Ding Hua SHI2
Author information +
文章历史 +

摘要

讨论M/T-SPH/1排队平稳队长分布和平稳逗留时间分布的尾部衰减特征,其中T-SPH表示可数状态吸收生灭过程吸收时间的分布.在分布PGF和LST的基础上,给出了两个平稳分布衰减规律的完整分析.结果表明,当参数取不同值时,平稳队长与平稳逗留时间的尾部具有三种不同类型的衰减特征.

Abstract

This paper considers tail asymptotics for stationary queue length and sojourn time distribution of M/T-SPH/1 queue, where T-SPH denotes the continuous time phase type distribution defined on a birth and death process with countably many states. By analysis of probability generation function of stationary queue length and Laplace-Stieltjes transform of stationary sojourn time, a complete characterization of the regions of system parameters for exact tail asymptotics is given. The results show that there are three types of exact tail asymptotics for the queue length and sojourn time in different regions.

关键词

尾部特征 / 几何衰减 / 指数衰减 / M/T-SPH/1排队 / 平稳指标

Key words

tail asymptotics / geometric decay / exponential decay / M/T-SPH/1 queue / stationary indices

引用本文

导出引用
张宏波, 史定华. M/T-SPH/1排队平稳指标分布的尾部衰减特征. 数学学报, 2017, 60(5): 713-720 https://doi.org/10.12386/A2017sxxb0060
Hong Bo ZHANG, Ding Hua SHI. Tail Asymptotics for Stationary Indices Distribution of M/T-SPH/1 Queue. Acta Mathematica Sinica, Chinese Series, 2017, 60(5): 713-720 https://doi.org/10.12386/A2017sxxb0060

参考文献

[1] Abate J., Whitt W., Asymptotics for M/G/1 low-priority waiting-time tail probabilities, Queu. Sys., 1997, 25: 173-233.
[2] Alfa A. S., Discrete time queues and matrix-analytic methods, TOP, 2000, 10: 147-210.
[3] Breuer L., Baum D., An Introduction to Queueing Theory and Matrix-Analytic Methods, Springer, New York, 2005.
[4] Cooper R. B., Introduction to Queueing Theory, Elsevier North Holland, Inc., North Holland, 1981.
[5] Flatto L., Hahn S., Two parallel queues created by arrivals with two demands-I, SIAM J. Appl. Math., 1984, 44: 1041-1053.
[6] Flatto L., Two parallel queues created by arrivals with two demands-Ⅱ, SIAM J. Appl. Math., 1985, 45: 861-878.
[7] Haque L., Zhao Y. Q., Liu L. M., Sufficient conditions for a geometric tail in a QBD process with many countable levels and phases, Stochastic Models, 2005, 21: 77-99.
[8] Li H., Miyazawa M., Zhao Y. Q., Geometric decay in a QBD process with countable background states with applications to a join-the-shortest-queue model, Stochastic Models, 2007, 23: 413-438.
[9] Li H., Zhao Y. Q., Exact tail asymptotics in a priority queue-characterizations of the preemptive model, Queu. Sys., 2009, 63: 355-381.
[10] Li H., Zhao Y. Q., Exact tail asymptotics in a priority queue-characterizations of the non-preemptive model, Queu. Sys., 2011, 68: 165-192.
[11] Li H., Zhao Y. Q., Tail asymptotics for a generalized two-demand queueing model—a kernel method, Queu. Sys., 2011, 69: 77-100.
[12] Motyer A. J., Taylor P. G., Decay rates for quasi-birth-and-death processes with countably many phases and tridiagonal block generators, Advanced in Applied Probability, 2006, 38: 522-544.
[13] Neuts M. F., Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, the Johns Hopkins University Press, Baltimore, 1981.
[14] Shi D. H., Guo J. L., Liu L. M., On the SPH-distribution class, Acta Math. Sci., 2005, 25B: 201-214.
[15] Takahashi Y., Fujimoto K., Makimoto N., Geometric decay of the steady-state probabilities in a quasi-birthand-death process with a countable number of phases, Stochastic Models, 2001, 17: 1-24.
[16] Tang J. S., Zhao Y. Q., Stationary tail asymptotics of a tandem queue with feedback, Annals of Operational Research, 2008, 160: 173-189.
[17] Zhang Z. S., Analytical results for waiting time and system size distributions in two parallel queueing systems, SIAM J. Appl. Math., 1990, 50: 1176-1193.
[18] Zhang H. B., Feng P. H., Analysis for stationary queue length of the M/T-SPH/1 queue (in Chinese), Operations Research Transactions, 2011, 15: 110-118.
[19] Zhang H. B., Shi D. H., Analysis of two queueing models with explicit rate operators and stationary distributions, Inter. J. Infor. Man. Sci., 2011, 22: 177-188.
[20] Zhang H. B., Shi D. H., Hou Z. T., Explicit solution for queue length distribution of M/T-SPH/1 queue, Asia-Pacific J. Oper. Res., 2014, 31: 1450001.

基金

国家自然科学基金资助项目(61174160);河南省科技攻关计划项目(172102210242);河南省高等学校青年骨干教师项目(2014GGJS-136);河南省高等学校重点科研项目(16A110002)

PDF(508 KB)

Accesses

Citation

Detail

段落导航
相关文章

/