
均衡问题、变分不等式问题和不动点问题的强收敛定理
Strong Convergence Theorems for Equilibrium Problems,Variational Inequality Problems and Fixed Point Problems
在一致光滑与2-一致凸Banach空间里,引进一个新的混合投影算法,找到了两族半相对非扩张映射的公共不动点集,有限个一般均衡问题的解集与宽松的协合算子的有限个变分不等式问题解集的公共元.所得结果推广了许多最近成果.
We introduce a new hybrid projection algorithm for finding a common element of the set of common fixed points of two countable families of hemi-relatively nonexpansive mappings and the set of solutions of finite general equilibrium problems and the set of solutions of finite variational inequalities for relaxed cocoercive operators in the framework of uniformly smooth and 2-uniformly convex Banach spaces.The results obtained in this paper improve and extend the corresponding results announced by many others.
强收敛 / 不动点 / 半相对非扩张映射 / 变分不等式 / Banach空间 {{custom_keyword}} /
strong convergence / fixed point / hemi-relatively nonexpansive mapping / variational inequality / Banach space {{custom_keyword}} /
[1] Alber Ya. I., Metric and Generalized Projection Operators in Banach Spaces:Properties and Applications, Lecture Notes Pure Appl. Math., Dekker, New York, 1996, 178:15-50.
[2] Blum E., Oettli W., From optimization and variational inequalities to equilibrium problems, Math. Studient., 1994, 63:123-145.
[3] Butnariu D., Reich S., Zaslavski A. J., Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., 2001, 7:151-174.
[4] Ceng L. C., Guu S. M., Hu H. Y., et al., Hybrid shrinking projection method for a generalized equilibrium problem, a maximal monotone operator and a countable family of relatively nonexpansive mappings, Comput. Math. Appl., 2011, 61:2468-2479.
[5] Chang S., Joseph Lee H. W., Chan C. K., A new hybrid method for solving a generalized equilibrium problem, solving a variational inequality problem and obtaining common fixed points in Banach spaces, with applications, Nonlinear Anal., 2010, 73:2260-2270.
[6] Cho Y. J., Zhou H. Y., Guo G., Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., 2004, 47:707-717.
[7] Kamimura S., Takahashi W., Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., 2002, 13:938-945.
[8] Nakajo K., Shimoji K., Takahashi W., On strong convergence by the hybrid method for families of mappings in Hilbert spaces, Nonlinear Anal., 2009, 71:112-119.
[9] Ofoedu E. U., Shehu Y., Convergence analysis for finite family of relatively quasi nonexpansive mappings and systems of equilibrium problems, Appl. Math. Comput., 2011, 217:9142-9150.
[10] Plubtieng S., Ungchittrakool K., Approximation of common fixed points for a countable family of relatively nonexpansive mappings in a Banach space and applications, Nonlinear Anal., 2010, 72:2896-2908.
[11] Rockfellar R. T., Monotone operators and the proximal point algorithm, SIAM J. Control. Optim., 1976, 14:877-898.
[12] Su Y., Li M., Zhang H., New monotone hybrid algorithm for hemi-relatively nonexpansive mappings and maximal monotone operators, Appl. Math. Comput., 2011, 217:5458-5465.
[13] Su Y., Wang Z., Xu H. K., Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal., 2009, 71:5616-5628.
[14] Takahashi S., Takahashi W., Strong convergence theorems for a generalized equilibrium problem and a nonexpansive mapping in Hilbert space, Nonlinear Anal., 2008, 69(3):1025-1033.
[15] Xu H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., 1991, 16:1127-1138.
[16] Zhang C., Li J., Liu B., Strong convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Comput. Math. Appl., 2011, 61:262-276.
国家自然科学基金资助项目(11401063);重庆市自然科学基金(cstc2014jcyjA00016)和重庆市教委科技项目基金(KJ1500314)
/
〈 |
|
〉 |