复高阶微分方程的解

王钥

数学学报 ›› 2017, Vol. 60 ›› Issue (4) : 651-660.

PDF(398 KB)
PDF(398 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (4) : 651-660. DOI: 10.12386/A2017sxxb0054
论文

复高阶微分方程的解

    王钥
作者信息 +

Solutions of Complex Higher-Order Differential Equations

    Yue WANG
Author information +
文章历史 +

摘要

利用亚纯函数的Nevanlinna值分布理论以及最大模原理,讨论了一类复高阶微分方程的代数体解以及一类复高阶微分方程组的超越亚纯解的存在性问题,得到了两个结论.还推广了一些文献的结论,例子表明该文的结论是精确的.

Abstract

Using Nevanlinna theory of the value distribution of meromorphic functions,and maximum modulus principle,we investigate the problem of the existence of the algebroid solutions of a class of complex higher-order differential equations and the transcendental meromorphic solutions of a class of system of complex higher-order differential equations and obtain two results.Extensions of some results in references are presented.Examples show that our results are precise.

关键词

值分布理论 / 最大模原理 / 代数体解 / 超越亚纯解 / 微分方程

Key words

value distribution / maximum modulus principle / algebroid solutions / transcendental meromorphic solutions / differential equations

引用本文

导出引用
王钥. 复高阶微分方程的解. 数学学报, 2017, 60(4): 651-660 https://doi.org/10.12386/A2017sxxb0054
Yue WANG. Solutions of Complex Higher-Order Differential Equations. Acta Mathematica Sinica, Chinese Series, 2017, 60(4): 651-660 https://doi.org/10.12386/A2017sxxb0054

参考文献

[1] Chen Z. X., On the rate of growth of meromorphic solutions of higher order differential equations, Acta Math. Sin. Chin. Ser., 1999, 42(3):551-558.
[2] Chen Z. X., Shon K. H., On the growth of solutions of a class of higher order differential equation, Acta Math. Sci. Ser. B Engl. Ed., 2004, 24(1):52-60.
[3] Gao L. Y., Meromorphic admissible solutions of differential equation, Chin. Ann. Math. Ser. A, 1999, 20(2):221-228.
[4] Gao L.Y., The form of systems of algebraic differential equations with admissible solutions, J. Systems Sci. Math. Sci., 2004, 24(1):96-101.
[5] Gao L. Y., On the growth of components of meromorphic solutions of systems of complex differential equations, Acta Math. Appl. Sin. Engl. Ser., 2005, 21(3):499-504.
[6] Gao L. Y., The growth of solutions of systems of complex nonlinear algebraic differential equations, Acta Math. Sci. Ser. B Engl. Ed., 2010, 30(3):932-938.
[7] Gao L. Y., Expression of meromorphic solutions of systems of algebraic differential equations with exponential coefficients, Acta Math. Sci. Ser. B Engl. Ed., 2011, 31(2):541-548.
[8] Gao L. Y., Transcendental solutions of systems of complex differential equations, Acta Math. Sin. Chin. Ser., 2015, 58(1):41-48.
[9] He Y. Z., Xiao X. Z., Algebroid Functions and Ordinary Differential Equations (in Chinese), Science Press, Beijing, 1988.
[10] Li K. S., Chan W. L., Meromorphic solutions of higher order systems of algebraic differential Equations, Math. Scand., 1992, 71(1):105-121.
[11] Song S. G., Meromorphic solutions of differential equations in the complex domain, Acta Math. Sin. Chin. Ser., 1991, 34(6):779-784.
[12] Toda N., On algebroid solutions of some binomial differential equations in the complex plane, Proc. Japan Acad. Ser. A Math. Sci., 1988, 64(3):61-64.
[13] Toda N., On the growth of meromorphic solutions of some higher order differential equations, J. Math. Soc. Japan, 1986, 38(3):439-451.
[14] Tu Z. H., Xiao X. Z., On the meromorphic solutions of system of higher order algebraic differential equations, Complex Variables Theory Appl., 1990, 15(3):197-209.
[15] Yi H. X., Yang C. C., Theory of the Uniqueness of Meromorphic Functions (in Chinese), Science Press, Beijing, 1995.

基金

国家自然科学基金资助项目(11171013,11461054);河北省自然科学基金(A2015207007)

PDF(398 KB)

380

Accesses

0

Citation

Detail

段落导航
相关文章

/