
p-算子空间上的框架逼近和嵌入
Frame Approximation and Embedding for p-operator Spaces
介绍了p-算子空间上的p-完全有界框架概念.证明了可分p-算子空间X上存在p-完全有界框架当且仅当X满足p-完全有界逼近性质当且仅当X能够p-完全可补嵌入有p-完全有界基的p-算子空间.对于满足p-完全有界逼近性质的非可分的p-算子空间,还证明了其任意可分子空间均可以p-完全同构嵌入到有p-完全有界框架的p-算子空间.
We introduce the concept of p-completely bounded frames for p-operator spaces.We prove that a separable p-operator space X has a p-completely bounded frame if and only if it has the p-completely bounded approximation property if and only if it can be p-completely complementedly embedded into a p-operator space with a pcompletely bounded basis.For a non-separable p-operator space with the p-completely bounded approximation property, we prove that its separable subspace always can be p-completely isomorphically embedded into a p-operator space with a p-completely bounded frame.
p-算子空间 / p-完全有界框架 / p-完全有界逼近性质 / p-完全有界基 {{custom_keyword}} /
p-operator space / p-completely bounded frame / p-completely bounded approximation property / p-completely bounded basis {{custom_keyword}} /
[1] An G., Lee J. J., Ruan Z. J., On p-approximation properties for p-operator spaces, J. Funct. Anal., 2010, 259:933-974.
[2] Bodmann B. G., Casazza P. G., Paulsen V. I., et al., Spanning and independence properties of frame partitions, Proc. Amer. Math. Soc., 2012, 140:2193-2207.
[3] Bo?ejko M., Fendler G., A Note on Certain Partial Sum Operators, Quantum Probability, Banach Center Publications, Vol 73, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 2006.
[4] Casazza P. G., Approximation Properties, Hanbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss, eds, Elsevier, Amsterdam, 2001:271-316.
[5] Casazza P. G., The art of frame theory, Taiwanese J. Math., 2000, 4:129-201.
[6] Casazza P. G., Dilworth S. J., Odell E., et al., Coefficient Quantization for Frames in Banach Spaces, J. Math. Anal. Appl., 2008, 348:66-86.
[7] Casazza P. G., Han D., Larson D. R., Frames for Banach spaces, Contemp. Math., 1999, 247:149-182.
[8] Christensen O., An Introduction to Frames and Riesz Bases, Birkhauser, New York, 2003.
[9] Casazza P. G., Tremain J. C., The Kadison-Singer problem in Mathematics and Engineering, Proc. Natl. Acad. Sci. USA, 2006, 103:2032-2039.
[10] Daws M., p-Operator spaces and Figà-Talamanca-Herz algebras, J. Operator Theory, 2010, 63:47-83.
[11] Donoho D. L., Elad M., Optimally sparse representations in general non orthogonal dictionaries via 1 minimization, Proc. Natl. Acad. Sci. USA, 2003, 100:2197-2202.
[12] Effros E. G., Ruan Z. J., On approximation properties for operator spaces, International J. Math., 1990, 1:163-187.
[13] Effros E. G., Ruan Z. J., Operator Spaces, London Mathematical Society Monographs. New Series 23, The Clarendon Press, Oxford University Press, New York, 2000.
[14] Eldar Y. C., Forney G. D., Optimal tight frames and quantum measurement, IEEE Trans. Inform. Theory, 2002, 48:599-610.
[15] Fabian M., Habala P., Hájek P., et al., Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Mathematics 8, Springer, New York, 2001.
[16] Gröchenig K., Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2000.
[17] Gröchenig K., Heil C., Modulation spaces and pseudodifferential operators, Int. Equa. Operator Th., 1999, 34:439-457.
[18] Haagerup U., An example of a nonnuclear C*-algebra, which has the metric approximation property, Invent. Math., 1978/1979, 50(3):279-293.
[19] Haagerup U., Kraus J., Approximation properties for group C*-algebras and group von Neumann algebras, Trans. Amer. Math. Soc., 1994, 344(2):667-699.
[20] Han D., Larson D. R., Frames, Bases and Group Representations, Mem. Amer. Math. Soc., 2000, 697.
[21] Han D., Larson D. R., Liu B., et al., Operator-Valued Measures, Dilations, and the Theory of Frames, Mem. Amer. Math. Soc., 2014, 229(1075).
[22] Han D., Larson D. R., Liu B., et al., Dilations for systems of imprmimitivity acting on Banach spaces, J. Funct. Anal., 2014, 266:6914-6937.
[23] Johnson W. B., Rosenthal H. P., Zippin M., On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math., 1971, 9:488-506.
[24] Junge M., Nielsen N., Ruan Z., et al., COLp-spaces, the local structure of non-commutative Lp spaces, Adv. Math., 2004, 187:257-319.
[25] Lata S., Paulsen V. I., The Feichtinger conjecture and reproducing kernel Hilbert spaces, Indiana Univ. Math. J., 2011, 60:1303-1317.
[26] Le Merdy C., Factorization of p-completely bounded multilinear maps, Pacific J. Math., 1996, 172:187-213.
[27] Li B. R., Introduction to Operator Algebras, World Scientific Publishing Company, Singapore, 1992.
[28] Li B. R., Real Operator Algebras, World Scientific Publishing Company, Singapore, 2003.
[29] Lindenstrauss J., Tzafriri L., Classical Banach Spaces I, Springer, Berlin, 1977.
[30] Liu R., Ruan Z. J., Cb-frames for operator spaces, J. Funct. Anal., 2016, 270:4280-4296.
[31] Marcus A., Spielman D. A., Srivastava N., Interlacing families Ⅱ:mixed characteristic polynomials and the Kadison-Singer Problem, Annals Math., 2015, 182:327-350.
[32] Pe?czyński A., Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math., 1971, 40:239-243.
[33] Pisier G., Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, 2003.
[34] Xu Q. H., Bekjan T. N., Chen Z. Q., Introduction to Operator Algebras and Noncommutative Lp Spaces, China Science Publishing, Beijing, 2010.
[35] Ruan Z. J., Subspaces of C*-algebras, J. Funct. Anal., 1988, 76:217-230.
国家自然科学基金资助项目(11671214,11301285,11201336,11101220)
/
〈 |
|
〉 |