自伴标准算子代数上强保持k-斜交换性映射的刻画

王玮, 侯晋川

数学学报 ›› 2017, Vol. 60 ›› Issue (1) : 39-52.

PDF(573 KB)
PDF(573 KB)
数学学报 ›› 2017, Vol. 60 ›› Issue (1) : 39-52. DOI: 10.12386/A2017sxxb0004
论文

自伴标准算子代数上强保持k-斜交换性映射的刻画

    王玮, 侯晋川
作者信息 +

Strong k-skew Commutativity Preserving Maps on Self-Adjoint Standard Operator Algebras

    Wei WANG, Jin Chuan HOU
Author information +
文章历史 +

摘要

H是维数大于2的复Hilbert空间,AH上自伴标准算子代数.对于给定的正整数k≥1,H上算子ABk-斜交换子递推地定义为*[A,B]k=*[A*[A,B]k-1],其中*[A,B]0=B*[A,B]1=AB-BA*.设k≥4,φA上的值域包含所有一秩投影的映射.本文证明了φ满足*[φA),φB)]k=*[A,B]k对任意A,BA都成立的充分必要条件是φA)=A对任意AA都成立,或φA)=-A对任意AA都成立.当k是偶数时后一情形不出现.

Abstract

Let H be a complex Hilbert space with dim H>2 and A be a selfadjoint standard operator algebra on H.For given positive integer k≥1, the k-skew commutator of operators A and B on H is defined as *[A, B]k=*[A, *[A, B]k-1], where *[A, B]0=B, *[A, B]1=AB-BA*.Assume k≥4 and Φ is a map on A with range containing all rank one projections.It is shown that, *[Φ(A), Φ(B)]k=*[A, B]k holds for all A, BA if and only if Φ(A)=A for all AA, or Φ(A)=-A for all AA.The latter case does not occur if k is even.

关键词

Hilbert空间 / k-斜交换子 / 自伴标准算子代数 / 保持映射

Key words

Hilbert spaces / k-skew commutators / self-adjoint standard operator algebras / preservers

引用本文

导出引用
王玮, 侯晋川. 自伴标准算子代数上强保持k-斜交换性映射的刻画. 数学学报, 2017, 60(1): 39-52 https://doi.org/10.12386/A2017sxxb0004
Wei WANG, Jin Chuan HOU. Strong k-skew Commutativity Preserving Maps on Self-Adjoint Standard Operator Algebras. Acta Mathematica Sinica, Chinese Series, 2017, 60(1): 39-52 https://doi.org/10.12386/A2017sxxb0004

参考文献

[1] Bresar M., Miers C. R., Strong commutativity preserving maps of semiprime ring, Can. Math. Bull, 1994, 37(4):457-460.
[2] Cui J. L., Hou J. C., Linear maps preserving elements annihilated by a polymnomial XY-Y X, Studia Math., 2006, 174(2):183-199.
[3] Cui J. L., Li C. K., Maps preserving product XY-Y X* on factor von Neumann algebras, Linear Algebra Appl., 2009, 431(5-7):833-842.
[4] Cui J. L., Park C., Maps preserving strong skew lie product on factor von neumann algebras, Acta Math. Sci., 2012, 32(2):531-538.
[5] Dai L. Q., Lu F. Y., Nolinear maps preserving Jordan *-products, J. Math. Anal. Appl., 2014, 409(1):180-188.
[6] Fong C. K., Sourour A. R., On the operator equation ∑i=1nAiXBi≡0, Canad. J. Math., 1979, 31(6):845-857.
[7] Hou J. C., Cui J. L., An Introduction to Linear Mappings on Operator Algebras, Science Press, Beijing, 2002.
[8] Hou J. C., Wang W., Strong 2-skew commutativity preserving maps on prime rings with involution, Bull. Mala. Math. Sci. Soc., to appear.
[9] Li C. J., Chen Q. Y., Strong skew commutativity preserving maps on rings with involution, Acta Math., 2016, 32(6):745-752.
[10] Li C. J., Lu F. Y., Fang X. C., Nolinear mappings preserving product XY+Y X* on factor von Neumann algebras, Linear Algebra Appl., 2013, 438(5):2339-2345.
[11] Li C. J., Lu F. Y., Fang X. C., Nolinear ξ-Jordan *-dervations on von Neumann algebras, Linear Multilinear Algebra, 2014, 62(5):466-473.
[12] Lin J. S., Liu C. K., Strong commutativity preserving maps on Lie ideals, Linear Algebra Appl., 2008, 428(7):1601-1609.
[13] Liu L., Strong commutativity preserving maps on von Neumann algebras, Linear and Multilinear Algebra, 2015, 63(3):490-496.
[14] Liu M. Y., Hou J. C., Strong 3-commutativity preserving maps on standard operator algebra, [math.FA] 24 Jan 2016, arXiv:1601.06336vl.
[15] Liu M. Y., Hou J. C., Strong k-commutativity preserving maps on 2×2 matrices, [math.RA] 15 Mar 2016, arXiv:1603.08414.
[16] Li L., Strong skew commutativity preserviting maps on rings, J. Aust. Math. Soc., 2016, 100(1):78-85.
[17] Molnár L., A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl., 1996, 235:229-234.
[18] Qing D., Mohammad A., On strong commutativity preserving maps, Results Math., 1996, 30(3-4):259-263.
[19] Qi X. F., Strong 2-commutativity preserving maps on prime rings, Publ. Math. Debrecen, 2016, 88(2):119-129.
[20] Qi X. F., Hou J. C., Nonlinear strong commutativity preserving maps, Comm. Algebra, 2010, 38(8):2790-2796.
[21] Qi X. F., Hou J. C., Strong skew commutativity preserving maps on von Neumann algebras, J. Math. Analysis Appl., 2013, 397(1):363-370.

基金

国家自然科学基金资助项目(11271217,11671294)

PDF(573 KB)

385

Accesses

0

Citation

Detail

段落导航
相关文章

/