
亚纯函数及其差分的唯一性
The Uniqueness of Meromorphic Functions and Their Differences
本文证明了:对具有两个Borel例外值a(∈C)和b(∈C∪{∞})的有限级超越亚纯函数,如果f(z+η)-f(z)和f(z)CM分担a,b,其中η(∈C)满足f(z+η)?f(z),那么b=∞,a=0且f(z)=cec1z,其中c,c1为非零常数.
We prove that for a transcendental meromorphic function f of finite order which has two Borel exceptional values a(∈C) and b(∈C∪{∞}), if f(z+η)-f(z) and f(z) share values a, b CM, where η(∈C) satisfies f(z+η)?f(z), then b=∞, a=0且f(z)=cec1z, where c, c1 are two nonzero constants.
复差分 / 亚纯函数 / Borel例外值 / 分担值 {{custom_keyword}} /
complex difference / meromorphic function / Borel exceptional value / shar-ing value {{custom_keyword}} /
[1] Brück R., On entire functions which share one value CM with their first derivative, Results Math., 1996, 30:21-24.
[2] Chen Z. X., Growth and zeros of meromorphic solutions of some linear difference equation, J. Math. Anal. Appl., 2011, 373:235-241.
[3] Chen Z. X., Shon K. H., Value distribution of meromorphic solutions of certain difference Painleve equations, J. Math. Anal. Appl., 2010, 364:556-566.
[4] Chen Z. X., Shon K. H., On conjecture of R. Buück, concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math., 2004, 8(2):235-244.
[5] Chen Z. X., Yi H. X., On Sharing Values of Meromorphic Functions and Their Difference, Results Math., 2013, 63(1):557-565.
[6] Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane, Ramanujan J., 2008, 16:105-129.
[7] Gross F., Factorization of Meromorphic Functions, U.S. Government Printing Office, Washinton, 1972.
[8] Gundersen G., Meromorphic functions that share four values, Trans. Amer. Math. Soc., 1983, 277:545-567.
[9] Gundersen G., Correction to Meromorphic functions that share four values, Trans. Am. Math. Soc., 1987, 304:847-850.
[10] Gundersen G., Yang L. Z., Entire functions that share one values with one or two of their derivatives, J. Math. Anal. Appl., 1998, 223(1):88-95.
[11] Halburd R. G., Korhonen R., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314:477-487.
[12] Halburd R. G., Korhonen R., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 2006, 31:463-478.
[13] Heittokangas J., Korhonen R., Laine I., et al., Complex difference equations of Malmquist type. Comput. Methods Funct. Theory, 2001, 1:27-39.
[14] Heittokangas J., Korhonen R., Laine I., et al., Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl., 2009, 355, 352-363.
[15] Heittokangas J., Korhonen R., Laine I., et al., Uniqueness of meromorphic functions sharing values with their shifts. Complex Var. Elliptic Equ., 2011, 56:81-92.
[16] Hayman W. K., Meromorphic Function, Clarendon Press, Oxford, 1964.
[17] Laine I., Yang C. C., Value distribution of difference polynomials, Proc. Japan Acad., 2007, 83A:148-151.
[18] Laine I., Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993.
[19] Liu K., Meromorphic functions sharing a set with applications to difference quations, J. Math. Anal. Appl., 2009, 359:384-393.
[20] Mues E., Meromorphic functions sharing four values, Complex Var. Elliptic Equ., 1989, 12:167-179.
[21] Nevanlinna R., Einige Eindentigkeitssätze in der theorie der meromorphen funktionen, Acta Math., 1926, 48:367-391.
[22] Yang C. C., Laine I., On analogies between nonlinear difference and differential equations, Proc. Japan Acad., 2010, 86(A):10-14.
[23] Yang C. C., Yi H. X., Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003.
[24] Yang L., Value Distribution Theory, Science Press, Beijing, 1993.
国家自然科学基金资助项目(11401387);广东省自然科学基金资助项目(2014A030313422,2016A030310106);浙江省自然科学基金资助项目(LQ14A010007)
/
〈 |
|
〉 |