
有限群共轭类长的一个问题
On a Problem of the Length of Conjugacy Classes of Finite Groups
设A和B都是有限群G的子群且G=AB.若A是G的次正规子群,且对每个p∈π(G)以及每个素数幂阶的p'-元x∈A∪B,p2均不整除|xG|,则G为超可解群.这个结果正面解答了由石向东,韦华全和马儇龙于2013年提出的一个问题,统一推广了由刘晓蕾于2011年得到的三个定理.
Let G be a finite group with subgroups A and B such that G=AB. If A is subnormal in G and for any p∈π(G) and any p'-element x of A∪B with prime power order,|xG| is not divisible by p2, then G is supersolvable. This result gives a positive answer to a problem posed in 2013 by Shi Xiangdong, Wei Huaquan and Ma Xuanlong and a unify generalization of three theorems obtained in 2011 by Liu Xiaolei.
有限群 / 可解群 / 超可解群 / 共轭类长 / 次正规子群 {{custom_keyword}} /
finite group / solvable / supersolvable / length of conjugacy class / subnormal {{custom_keyword}} /
[1] Chillag D., Herzog M., On the length of the conjugacy classes of finite groups, J. Algebra, 1990, 131:110-125.
[2] Cossey J., Wang Y., Remarks on the length of conjugacy classes of finite groups, Comm. Algebra, 1999, 27(9):4347-4353.
[3] Fein B., Kantor W. M., Schacher M., Relative Brauer groups II, J Reine Angew Math., 1981, 325:39-57.
[4] Isaacs I. M., Character Theory of Finite Groups, Dover Publications, New York, 1976.
[5] Liu X., Notes on the length of conjugacy classes of finite groups II (in Chinese), Science China:Mathematics, 2010, 40(6):539-544.
[6] Liu X., Wang Y., Wei H., Notes on the length of congugacy classes of finite groups, J. Pure Appl. Algebra, 2005, 196:111-117.
[7] Qian W., Guo X., Sufficient conditions for a factorized group to be supersolvable (in Chinese), J. Shanghai University (Natural Science), 2011, 17(3):286-288.
[9] Ren Y., On the length of p-regular classes and the p-structure of finite groups, Algebra Colloq., 1995, 2(1):3-10.
[9] Robinson D. J. S., A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
[10] Shi X., Wei H., Ma X., Lengths of conjugacy classes of factorized groups and structure of finite groups (in Chinese), J. Zhengzhou University (Natural Science), 2013, 45(2):10-13.
[11] Xu M., Introduction to Finite Group, Vol 1, Second Edition (in Chinese), Science Press, Beijing, 1999.
[12] Xu M., Huang J., Li H., et al., Introduction to Finite Group, Vol 2, Second Edition, Science Press, Beijing, 1999.
国家自然科学基金资助项目(11361006,11161006);广西大学科研基金资助项目(XGZ130761)
/
〈 |
|
〉 |