有限群共轭类长的一个问题

卢若飞, 韦华全, 周宇珍, 马儇龙

数学学报 ›› 2016, Vol. 59 ›› Issue (6) : 795-798.

PDF(385 KB)
PDF(385 KB)
数学学报 ›› 2016, Vol. 59 ›› Issue (6) : 795-798. DOI: 10.12386/A2016sxxb0071
论文

有限群共轭类长的一个问题

    卢若飞1, 韦华全2, 周宇珍2, 马儇龙2
作者信息 +

On a Problem of the Length of Conjugacy Classes of Finite Groups

    Ruo Fei LU1, Hua Quan WEI2, Yu Zhen ZHOU2, Xuan Long MA2
Author information +
文章历史 +

摘要

AB都是有限群G的子群且G=AB.若AG的次正规子群,且对每个pπG)以及每个素数幂阶的p'-元xABp2均不整除|xG|,则G为超可解群.这个结果正面解答了由石向东,韦华全和马儇龙于2013年提出的一个问题,统一推广了由刘晓蕾于2011年得到的三个定理.

Abstract

Let G be a finite group with subgroups A and B such that G=AB. If A is subnormal in G and for any pπ(G) and any p'-element x of AB with prime power order,|xG| is not divisible by p2, then G is supersolvable. This result gives a positive answer to a problem posed in 2013 by Shi Xiangdong, Wei Huaquan and Ma Xuanlong and a unify generalization of three theorems obtained in 2011 by Liu Xiaolei.

关键词

有限群 / 可解群 / 超可解群 / 共轭类长 / 次正规子群

Key words

finite group / solvable / supersolvable / length of conjugacy class / subnormal

引用本文

导出引用
卢若飞, 韦华全, 周宇珍, 马儇龙. 有限群共轭类长的一个问题. 数学学报, 2016, 59(6): 795-798 https://doi.org/10.12386/A2016sxxb0071
Ruo Fei LU, Hua Quan WEI, Yu Zhen ZHOU, Xuan Long MA. On a Problem of the Length of Conjugacy Classes of Finite Groups. Acta Mathematica Sinica, Chinese Series, 2016, 59(6): 795-798 https://doi.org/10.12386/A2016sxxb0071

参考文献

[1] Chillag D., Herzog M., On the length of the conjugacy classes of finite groups, J. Algebra, 1990, 131:110-125.
[2] Cossey J., Wang Y., Remarks on the length of conjugacy classes of finite groups, Comm. Algebra, 1999, 27(9):4347-4353.
[3] Fein B., Kantor W. M., Schacher M., Relative Brauer groups II, J Reine Angew Math., 1981, 325:39-57.
[4] Isaacs I. M., Character Theory of Finite Groups, Dover Publications, New York, 1976.
[5] Liu X., Notes on the length of conjugacy classes of finite groups II (in Chinese), Science China:Mathematics, 2010, 40(6):539-544.
[6] Liu X., Wang Y., Wei H., Notes on the length of congugacy classes of finite groups, J. Pure Appl. Algebra, 2005, 196:111-117.
[7] Qian W., Guo X., Sufficient conditions for a factorized group to be supersolvable (in Chinese), J. Shanghai University (Natural Science), 2011, 17(3):286-288.
[9] Ren Y., On the length of p-regular classes and the p-structure of finite groups, Algebra Colloq., 1995, 2(1):3-10.
[9] Robinson D. J. S., A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
[10] Shi X., Wei H., Ma X., Lengths of conjugacy classes of factorized groups and structure of finite groups (in Chinese), J. Zhengzhou University (Natural Science), 2013, 45(2):10-13.
[11] Xu M., Introduction to Finite Group, Vol 1, Second Edition (in Chinese), Science Press, Beijing, 1999.
[12] Xu M., Huang J., Li H., et al., Introduction to Finite Group, Vol 2, Second Edition, Science Press, Beijing, 1999.

基金

国家自然科学基金资助项目(11361006,11161006);广西大学科研基金资助项目(XGZ130761)

PDF(385 KB)

Accesses

Citation

Detail

段落导航
相关文章

/