Terence Tao的一个问题

孙学功

数学学报 ›› 2016, Vol. 59 ›› Issue (4) : 527-534.

PDF(345 KB)
PDF(345 KB)
数学学报 ›› 2016, Vol. 59 ›› Issue (4) : 527-534. DOI: 10.12386/A2016sxxb0049
论文

Terence Tao的一个问题

    孙学功
作者信息 +

On a Problem of Terence Tao

    Xue Gong SUN
Author information +
文章历史 +

摘要

解决了Terence Tao提出的一个问题.证明了:设K ≥ 2,N充分大, LN为{-KN,…, KN}的任意子集, |LN|=K.那么在[N,(1+1/K)N]中至少存在CKN/log N个素数p,使得|kp+jai+l|为合数,其中1 ≤ a,|j|,kK, 1 ≤ i ≤ K log N, lLN, jai+l≠0,常数CK>0与K有关.

Abstract

We solve a problem of Terence Tao. We prove that for any K≥2 and sufficiently large N, the number of primes p between N and (1+1/K)N such that |kp+jai+l| is composite for all 1≤a, |j|, kK, 1 ≤ i ≤ K log N and l in any set LN⊆{-KN, …, KN} of cardinality K with jai+l≠0 is at least CK M/log N, where CK>0 depending only on K.

关键词

Terence Tao问题 / 素数 / Selberg筛法

Key words

Terence Tao's problem / primes / Selberg's sieve method

引用本文

导出引用
孙学功. Terence Tao的一个问题. 数学学报, 2016, 59(4): 527-534 https://doi.org/10.12386/A2016sxxb0049
Xue Gong SUN. On a Problem of Terence Tao. Acta Mathematica Sinica, Chinese Series, 2016, 59(4): 527-534 https://doi.org/10.12386/A2016sxxb0049

参考文献

[1] Chen Y. G., Sun X. G., On Romanoff's constant, J. Number Theory, 2004, 106: 275-284.
[2] Chen Y. G., Feng R., Templier N., Fermat numbers and integers of the form ak+al+pα, Acta Arith., 2008, 135: 51-61.
[3] Cohen F., Selfrige J. L., Note every number is the sum or difference of two prime powers, Math. Comput., 1975, 29: 79-81.
[4] Crocker R., On the sum of a prime and two powers of two, Pacific J. Math., 1971, 36: 103-107.
[5] Erd?s P., On integers of the form 2r+p and some related problems, Summa Brasil. Math., 1950, 2: 113-123.
[6] Halberstam H., Richert H. E., Sieve Methods, Academic Press Inc. London Ltd., 1974.
[7] Nathanson M. B., Additive Number Theory, The Classical Bases, Springer, New York, 1996.
[8] Pan H., On the integers not of the form p+2α+2β, Acta Arith., 2011, 148(1): 55-61.
[9] Pan H., On the number of distinct prime factors of nj+ahk, Monatsh Math., 2014, 175: 293-305.
[10] Pintz J., A note on Romanov's constant, Acta Math. Hungar., 2006, 112: 1-14.
[11] Romanoff N. P., Über einige Sätze der additiven Zahlentheorie, Math. Ann., 1934, 109: 668-678.
[12] Barkley Rosser J., Schoenfeld L., Approximate formulas for some functions of prime numbers, Illinois Journal of Mathematics, 1962, 6: 64-94.
[13] Sun Z. W., Le M. H., Integers not of the form c(2a+2b)+pα, Acta Arith., 2001, 99: 183-190.
[14] Sun X. G., Dai L. X., Chen's conjecture and its generalization, Chin. Ann. Math., 2013, 34B: 957-962.
[15] Tao T., A remark on primality testing and decimal expansion, J. Austr. Math. Soc., 2011, 3: 405-413.
[16] Yuan P. Z., Integers not of the form c(2a+2b)+pα, Acta Arith., 2004, 115: 23-28.

基金

国家自然科学基金资助项目(11471017);淮海工学院自然科学基金资助项目(KQ10002)

PDF(345 KB)

322

Accesses

0

Citation

Detail

段落导航
相关文章

/