
整体函数域上不可分二次格的构作
The Construction of Indecomposable Quadratic Lattices over Global Function Fields
构作了有理函数域F19(x)上秩3到6的不可分格,回答了Gerstein关于整体函数域上是否存在秩5的不可分格的问题.
We construct indecomposable quadratic lattices of rank 3,4,5 and 6 over a suitable Hasse domain of the rational function field F19(x),which,in particular,solves the problem proposed by Gerstein about the existence of indecomposable quadratic lattices of rank 5 over global function fields.
不可分格 / 整体函数域 / Hasse环 / 约当分裂 / 类数 {{custom_keyword}} /
indecomposable lattice / global function field / Hasse domain / Jordan splitting / class number {{custom_keyword}} /
[1] Benham J. W., Hsia J. S., Spinor equivalence of quadratic forms, J. Number Theory, 1983, 17:337-342.
[2] Gerstein L. J., Splitting quadratic forms over integers of global fields, Amer. J. Math., 1969, 91:106-134.
[3] Gerstein L. J., Unimodular quadratic forms over global function fields, J. Number Theory, 1979, 11:529-541.
[4] Gerstein L. J., A note on splitting quadratic forms, J. Number Theory, 1988, 29:231-233.
[5] Gerstein L. J., Indecomposable integral quadratic forms over global function fields, Acta Arith., 2000, 96:89-95.
[6] Gerstein L. J., Basic Quadratic Forms, Graduate Studies in Mathematics 90, Amer. Math. Soc., Providence, 2008.
[7] O'Meara O. T., Introduction to Quadratic Forms, Springer-Verlag, Berlin, New York, 1973.
[8] O'Meara O. T., The construction of indecomposable positive definite quadratic forms, J. Reine Angew. Math., 1975, 276:99-123.
[9] Rosen M., Number Theory in Function Fields, Springer-Verlag, New York, Berlin, Heidelberg, 2002.
河南省基础与前沿研究计划资助项目(132300410373)
/
〈 |
|
〉 |