
加权Bloch型空间上的广义复合算子
Generalized Composition Operators on Weighted Bloch-Type Spaces
研究了加权Bloch型空间上的广义复合算子的有界性和紧性,得到了刻画该算子为有界和紧的一些充分必要条件.
We investigate boundedness and compactness of the generalized composition operators between weighted Bloch-type spaces. Some sufficient and necessary conditions for the boundedness and compactness of these operators are obtained.
加权Bloch型空间 / 广义复合算子 / 有界性 / 紧性 {{custom_keyword}} /
weighted Bloch-type spaces / generalized composition operators / boundedness / compactness {{custom_keyword}} /
[1] Ahmed A. E., Kamal A., Generalized Composition operators on Qk(p, q) spaces, J. Fractional Calculus Appl., 2012, 3(18): 1-9.
[2] Attele K. R. M., Toeplitz and Hankel on Bergman one space, Hokaido Math. J., 1992, 21: 279-293.
[3] Cima J., Stegenda D., Hankel operators on Hp, in: Earl R. Berkson, N. T. Peck, J. Uih (Eds.), Analysis at Urbana 1, in: London Math. Soc., Lecture Note Ser., Cambridge Univ. Press, Cambridge, 1989, 137: 133-150.
[4] Cowen C. C., Maccluer B. D., Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Florida, 1995.
[5] Fu X., Zhu X., Weighted composition operators on some weighted spaces in the unit ball, Abstract and Applied Analysis, 2008, Article ID 605807, 8 pages.
[6] Krantz S., Stevi? S., On the iterated logarithmic Bloch space on the unit ball, Nonlinear Anal., 2009, 71: 1772-1795.
[7] Li H., Liu P., Composition operators between generally Bloch space and Qlogq space, Banach J. Math. Anal., 2009, 3(1): 99-110.
[8] Li S. X., On an integral-type operator from the Bloch space into the Qk(p, q) space, Filomat, 2012, 26(2): 125-133.
[9] Li S. X., Stevi? S., Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl., 2008, 338(2): 1282-1295.
[10] Li S. X., Stevi? S., Integral type operators from mixed-norm spaces to α-Bloch spaces, Integral Transforms and Special Functions, 2007, 18(7-8): 485-493.
[11] Madigan K., Matheson A., Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 1995, 347: 2679-2687.
[12] Shapiro J. H., Composition operators and classical function theory, Springer, New York, 1993.
[13] Sharma S. D., Sharmat A., Generalized Integral operators from Bloch type spaces to weighted BMOA spaces, Demonstratio Math., 2011, 2: 373-390.
[14] Sharma A. K., Ueki S. I., Composition operators from Nevanlinna type spaces to Bloch type spaces, Banach J. Math. Anal., 2012, 6(1): 112-123.
[15] Siskakis A., Zhao R., A Volterra type operator on spaces of analytic functions, Contemp, Math., 1999, 232: 299-311.
[16] Stevi? S., Norm of weighted composition operators from Bloch space to Hμ∞ on the unit ball, Ars Combinatoria, 2008, 88: 125-127.
[17] Ye S., A weighted composition operator between different weighted Bloch-type spaces (in Chinese), Acta. Math. Sinica, 2007, 50(4): 927-942.
[18] Ye S., Multipliers and cyclic vectors on the weighted Bloch space, Math. J. Okayama University, 2006, 48: 135-143.
[19] Yoneda R., The composition operators on the weighted Bloch space, Arch. Math., 2002, 78: 310-317.
[20] Zhang F., Liu Y. M., Generalized composition operators from Bloch type spaces to Qk type spaces, J. Funct. Spaces Appl., 2010, 8(1): 55-66.
[21] Zhu K. H., Operator Theory on Function Spaces, New York, 1990.
[22] Zhu X., An Integral-type operator from H∞ to Zygmund-type spaces, Bull. Malays. Math. Sci. Soc., 2012, 35: 679-686.
国家自然科学基金(11501142, 11571049); 贵州省科学技术厅、贵州师范大学联合科技基金(黔科合J字LKS[2012]12号);贵州省科学技术基金资助项目(黔科合J字[2015]2112号)
/
〈 |
|
〉 |