非线性各向异性椭圆方程的均匀化

赵磊娜

数学学报 ›› 2016, Vol. 59 ›› Issue (2) : 209-214.

PDF(416 KB)
PDF(416 KB)
数学学报 ›› 2016, Vol. 59 ›› Issue (2) : 209-214. DOI: 10.12386/A2016sxxb0019
论文

非线性各向异性椭圆方程的均匀化

    赵磊娜
作者信息 +

Homogenization of Nonlinear Anisotropic Elliptic Equations

    Lei Na ZHAO
Author information +
文章历史 +

摘要

通过结合各向异性Sobolev空间与经典的补偿紧性技巧,得到了一类非线性各向异性椭圆方程的均匀化结果.

Abstract

Based on anisotropic Sobolev space and compensated compactness methods, we obtain the homogenization of nonlinear elliptic equations with general anisotropic diffusivity.

关键词

各向异性 / 均匀化 / 补偿紧性

Key words

anisotropic / homogenization / compensated compactness

引用本文

导出引用
赵磊娜. 非线性各向异性椭圆方程的均匀化. 数学学报, 2016, 59(2): 209-214 https://doi.org/10.12386/A2016sxxb0019
Lei Na ZHAO. Homogenization of Nonlinear Anisotropic Elliptic Equations. Acta Mathematica Sinica, Chinese Series, 2016, 59(2): 209-214 https://doi.org/10.12386/A2016sxxb0019

参考文献

[1] Allaire G., Homogenization and two-scale convergence, SIAM J. Math. Anal., 1992, 23(6): 1482-1518.
[2] Bensoussan A., Lions J. L., Papanicolaou G., Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, 5, North-Holland, Amsterdam, 1978.
[3] Bendahmane M., Karlsen K. H., Anisotropic nonlinear elliptic systems with measure data and anisotropic harmonic maps into spheres, Electron. J. Differential Equations, 2006, 46: 30.
[4] Bendahmane M., Karlsen K. H., Nonlinear anisotropic elliptic and parabolic equations in RN with advection and lower order terms and locally integrable data, Potential Anal., 2005, 22(3): 207-227.
[5] Boccardo L., Gallouët T., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 1989, 87(1): 149-169.
[6] Boccardo L., Gallouët T., Marcellini P., Anisotropic equations in L1, Differential Integral Equations, 1996, 9(1): 209-212.
[7] Cioranescu D., Donato P., An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, 17, Oxford Univ. Press, New York, 1999.
[8] Chiadò Piat V., Defranceschi A., Homogenization of quasi-linear equations with natural growth terms, Manuscripta Math., 1990, 68(3): 229-247.
[9] Deng M., Feng Y., Two-scale finite element method for piezoelectric problem in periodic structure, Appl. Math. Mech. English Ed., 2011, 32(12): 1525-1540.
[10] Huang Y., Su N., Homogenization of degenerate nonlinear parabolic equation in divergence form, J. Math. Anal. Appl., 2007, 330(2): 976-988.
[11] Huang Y., Su N., Zhang X., Homogenization of degenerate quasilinear parabolic equations with periodic structure, Asymptot. Anal., 2006, 48(1-2): 77-89.
[12] Jian H., On the homogenization of degenerate parabolic equations, Acta Math. Appl. Sinica, English Ser., 2000, 16 (1): 100-110.
[13] Li F. Q., Anisotropic elliptic equations in Lm, J. Convex Anal., 2001, 8(2): 417-422.
[14] Lieberman G. M., Gradient estimates for anisotropic elliptic equations, Adv. Differential Equations, 2005, 10(7): 767-812.
[15] Lions J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, 1969.
[16] Lu Z., Liu Q., Chen X., Analysis and simulation for tensile behavior of anisotropic open-cell elastic foams, Appl. Math. Mech. English Ed., 2014, 35(11): 1437-1446.
[17] Moheddin A., Fereidoon A., Modeling of anisotropic polydispersed composites by progressive micromechanical approach, Appl. Math. Mech. English Ed., 2013, 34(3): 363-370.
[18] Murat F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1978, 5(3): 489-507.
[19] Nikolski? S. M., An imbedding theorem for functions with partial derivatives considered in different metrics, Izv. Akad. Nauk SSSR Ser. Mat., 1958, 22: 321-336.
[20] Slobodecki? L. N., Generalized Sobolev spaces and their application to boundary problems for partial differential equations, Leningrad. Gos. Ped. Inst. U?en. Zap., 1958, 197: 54-112.
[21] Tartar L., Compensated Compactness and Applications to Partial Differential Equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, 136-212, Res. Notes in Math., 39, Pitman, Boston, MA.
[22] Tersenov A. S., Tersenov A. S., The problem of Dirichlet for anisotropic quasilinear degenerate elliptic equations, J. Differential Equations, 2007, 235(2): 376-396.
[23] Troisi M., Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat., 1969, 18: 3-24.
[24] Trudinger N. S., An imbedding theorem for H0(G, Ω) spaces, Studia Math., 1974, 50: 17-30.

基金

国家自然科学基金资助资助项目(11401060)

PDF(416 KB)

316

Accesses

0

Citation

Detail

段落导航
相关文章

/