Banach空间上变分不等式的一个超梯度方法

唐国吉, 汪星

数学学报 ›› 2016, Vol. 59 ›› Issue (2) : 187-198.

PDF(623 KB)
PDF(623 KB)
数学学报 ›› 2016, Vol. 59 ›› Issue (2) : 187-198. DOI: 10.12386/A2016sxxb0017
论文

Banach空间上变分不等式的一个超梯度方法

    唐国吉1, 汪星2
作者信息 +

An Extragradient-Type Method for Variational Inequalities on Banach Spaces

    Guo Ji TANG1, Xing WANG2
Author information +
文章历史 +

摘要

把王宜举等人[Modified extragradient-type method forvariational inequalities and verification of the existence ofsolutions, J. Optim. Theory Appl, 2003, 119:167-183]在欧氏空间上求解变分不等式的一个超梯度型方法推广到Banach空间.变分不等式中的算子不要求是一致连续的,其主要优点在于不管变分不等式是否有解, 算法都是可执行的. 此外,变分不等式的可解性可以通过算法产生的序列的性态来刻画.在适当的条件下, 算法产生的序列强收敛于变分不等式的一个解,这是Bregman距离意义下离初始点最近的解.本文的主要结果推广和改善了近来文献中的相应结果.

Abstract

In this paper, an extragradient-type method proposed by Wang, Xiu and Zhang [Modified extragradient-type method for variational inequalities and verification of the existence of solutions, J. Optim. Theory Appl., 2003, 119: 167-183] for solving variational inequalities in Euclidean spaces is extended to Banach spaces. The operator involved in the variational inequality is not necessarily uniformly continuous. The main advantage lies in that the proposed algorithm is well defined no matter whether the variational inequality problem has a solution or not. Furthermore, the existence of the solution to the variational inequality problem can be verified through the behavior of the generated sequence. Under some suitable assumptions, the sequence generated by the proposed method is strongly convergent to the solution of the variational inequality, which is closest to the initial iterate in the sense of Bregman distance. The main results presented in this paper generalize and improve the recent ones in the literature.

关键词

变分不等式 / 投影型方法 / Banach空间

Key words

variational inequality / projection-type method / Banach space

引用本文

导出引用
唐国吉, 汪星. Banach空间上变分不等式的一个超梯度方法. 数学学报, 2016, 59(2): 187-198 https://doi.org/10.12386/A2016sxxb0017
Guo Ji TANG, Xing WANG. An Extragradient-Type Method for Variational Inequalities on Banach Spaces. Acta Mathematica Sinica, Chinese Series, 2016, 59(2): 187-198 https://doi.org/10.12386/A2016sxxb0017

参考文献

[1] Butnariu D., Iusem A. N., Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer, Dordrecht, 2000.
[2] Cruz J. Y. B., Iusem A. N., A strongly convergent direct method for monotone variational inequalities in Hilbert spaces, Numer. Funct. Anal. Optim., 2009, 30: 23-36.
[3] Facchinei F., Pang J. S., Finite-dimensional Variational Inequalities and Complementary Problems, Springer-Verlag, New York, 2003.
[4] He Y. R., A new double projection algorithm for variational inequalities, J. Comput. Appl. Math., 2006, 185: 166-173.
[5] Iusem A. N., Pérez L. R. L., An extragradient-type algorithm for non-smooth variational inequalities, Optimization, 2000, 48: 309-332.
[6] Iusem A. N., Otero G., Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces, Numer. Funct. Anal. Optim., 2001, 22: 609-640.
[7] Iusem A. N., Svaiter B. F., A variant of Korpelevich's method for variational inequalities with a new search strategy, Optimization, 1997, 42: 309-321.
[8] Iusem A. N., Nasri M., Korpelevich's method for variational inequality problems in Banach spaces, J. Glob. Optim., 2011, 50: 59-76.
[9] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
[10] Korpelevich G. M., The extragradient method for finding saddle points and other problems, Ekonomika i Matematcheskie Metody, 1976, 12: 747-756.
[11] Mashreghi J., Nasri M., Forcing strong convergence of Korpelevich's method in Banach spaces with its applications in game theory, Nonlinear Appl., 2010, 72: 2086-2099.
[12] Solodov M. V., Svaiter B. F., A new projection method for variational inequality problems, SIAM J. Control Optim., 1999, 37: 765-776.
[13] Solodov M. V., Svaiter B. F., Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. Ser. A, 2000, 87: 189-202.
[14] Tang G. J., Wang X., An inexact proximal point algorithm for nonmonotone equilibrium problems in Banach spaces, Taiwan J. Math., 2013, 17: 2117-2133.
[15] Tang G. J., Huang N. J., Korpelevich's method for variational inequality problems on Hadamard manifolds, J. Glob. Optim., 2012, 54: 493-509.
[16] Tang G. J., Wang X., Liu H. W., A projection-type method for variational inequalities on Hadamard manifolds and verification of solution existence, Optimization, 2015, 64(5): 1081-1096.
[17] Wang Y. J., Xiu N. H., Zhang J. Z., Modified extragradient-type method for variational inequalities and verification of the existence of solutions, J. Optim. Theory Appl., 2003, 119: 167-183.
[18] Xiu N. H., Wang C. Y., Zhang J. Z., Convergence properties of projection and contraction methods for variational inequality problems, Appl. Math. Optim., 2001, 43: 147-168.
[19] Xiu N. H., Zhang J. Z., Local convergence analysis of projection-type algorithms unified approach, J. Optim. Theory Appl., 2002, 115: 211-230.
[20] Xiu N. H., Zhang J. Z., Some recent advances in projection-type methods for variational inequalities, J. Comput. Appl. Math., 2003, 152: 559-585.

基金

国家自然科学基金(11561008, 11501263);广西自然科学基金(2013GXNSFBA019015);广西高校重点科研项目(ZD2014045)及优秀中青年骨干教师培养工程(桂教人2014-39);广西八桂学者专项和广西民族大学相思湖青年学者“优化理论及应用”(重点)创新团队资助

PDF(623 KB)

276

Accesses

0

Citation

Detail

段落导航
相关文章

/